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Whether spin-independent Coulomb interaction in an electron system can be 
the origin of ferromagnetism has been an open problem for a long time. 
Recently, a "constructive" approach to this problem has been developed, and 
the existence of ferromagnetism in the ground states of certain Hubbard models 
was established rigorously. A special feature of these Hubbard models is that 
their lowest bands (in the corresponding single-electron problems) are com- 
pletely flat. Here we study models obtained by adding small but arbitrary trans- 
lation-invariant perturbation to the hopping Hamiltonian of these flat-band 
models. The resulting models have nearly flat lowest bands. We prove that the 
ferromagnetic state is stable against a single-spin flip provided that Coulomb 
interaction U is sufficiently large. (It is easily found that the same state is 
unstable against a single-spin flip if U is small enough.) We also prove upper 
and lower bounds for the dispersion relation of the lowest energy eigenstate 
with a single flipped spin, which bounds establish that the model has "healthy" 
spin-wave excitation. It is notable that the (local) stability of ferromagnetism is 
proved in nonsingular Hubbard models, in which we must overcome competi- 
tion between the kinetic energy and the Coulomb interaction. We also note that 
this is one of the very few rigorous and robust results which deal with truly non- 
perturbative phenomena in many-electron systems. The local stability strongly 
suggests that the Hubbard models with nearly flat bands have ferromagnetic 
ground states. We believe that the present models can be studied as paradigm 
models for (insulating) ferromagnetism in itinerant electron systems. 
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1. INTRODUCTION 

1.1. Background 

The origin of the strong ferromagnetic ordering observed in some materials 
has long been a mystery, t291 Since noninteracting electron systems univer- 
sally exhibit paramagnetism, the origin of ferromagnetism should be sought 
in electron-electron interaction. In most solids, however, the dominant part 
of the interaction between electrons is the Coulomb interaction, which is 
perfectly spin independent (e.g., see ref. 3, Chapter 32, p. 674). Therefore we 
are faced with a very interesting and fundamental problem in theoretical 
physics, to determine whether spin-independent interaction in an itinerant 
electron system can be the origin of ferromagnetic ordering. This problem is 
important not only because ferromagnetism is a very common (and useful) 
phenomenon, but because it focuses on the fundamental role of nonlinear 
interactions in many-body quantum mechanical systems. 

The present work is a continuation of our work in refs. 47 and 34, 
where we dealt with the above fundamental problem from the standpoint 
of "constructive condensed matter physics." Our goal is to provide concrete 
models in which the existence of ferromagnetic ordering can be established 
rigorously. Such models should shed light on mechanisms by which the 
Coulomb interaction generates ferromagnetic ordering. 

It was Heisenberg t~4~ who first realized that ferromagnetism is an 
intrinsically quantum mechanical phenomenon. In Heisenberg's approach 
to ferromagnetism, one starts from the picture that each electron (relevant 
to magnetism) is almost localized at an atomic orbit. By treating the effect 
of Coulomb interaction and overlap between nearby atomic orbits in a per- 
turbative manner, Heisenberg concluded that "exchange interaction" 
appears between nearby electronic spins, which determines the magnetic 
properties of the system. 

The validity of the Heisenberg picture has been challenged from both 
theoretical and.physical points of views (see, for example, ref. 15). It has 
been realized that in most situations the exchange interaction is 
antiferromagnetic rather than ferromagnetic. Moreover, conditions which 
would justify the basic assumption that electrons can be treated as localized 
at atomic sites are not well understood. 2 

This issue is closely related to the problem of Mot t -Hubbard  insulators. 
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In a different approach to the problem of ferromagnetism originated 
by Bloch 15~ one starts from the quantum mechanical free electron gas, in 
which electrons are in plane-wave-like states. One then treats the effect of 
Coulomb interaction perturbatively and tries to find instability against 
certain magnetic ordering. When combined with the Hart ree-Fock 
approximation (or a mean-field theory), this approach leads to the picture 
that there is an instability against ferromagnetism when the density of 
states at the Fermi energy and the Coulomb interaction are sufficiently 
large. 

It has been realized, however, that the Hart ree-Fock approximation 
drastically overestimates the tendency toward ferromagnetism, thus predic- 
ting the existence of ferromagnetism in many situations where it does not 
take place. From a theoretical point of view, the approximation is 
unsatisfactory since it artificially replaces the fundamental SU(2) symmetry 
(i.e., rotation symmetry in the spin space) of the electron systems with a 
discrete Z~_ symmetry. Although there have been many improvements of the 
simple Har t ree-Fock theory, this approach does not provide a conclusive 
answer to the fundamental problem about the origin of ferromagnetism 
that we raised in the beginning of the present subsection. See, for example, 
ref. 16 for a review. 

1.2. Ferromagnet ism in the Hubbard Model  

A modern version of the problem of the origin of ferromagnetism was 
formulated by Kanamori, ~81 Gutzwiller, 1~21 and Hubbard ~m in 1960s. 
(A similar formulation was given earlier, for example, in ref. 41.) They 
studied simple tight-binding models of electrons with on-site Coulomb 
interaction 3 of strength U. The model is usually called the Hubbard model. 
When there is no electron-electron interaction (i.e., U = 0 ) ,  the model 
exhibits paramagnetism as an inevitable consequence of the Pauli exclusion 
principle. Among other things, Kanamori,  Gutzwiller, and Hubbard asked 
whether the paramagnetism found for U= 0 can be converted into ferro- 
magnetism when there is a sufficiently large Coulomb interaction U. This is 
a concrete formulation of the fundamental problem that we raised in the 
opening of the previous subsection. 

It is worth noting that the on-site Coulomb interaction itself is com- 
pletely independent of electronic spins, and does not favor any magnetic 

3 It is sometimes argued that the originally long-ranged Coulomb interaction becomes short 
ranged by the screening effect from electrons in the bands (or orbits) which are not taken 
into account in the Hubbard model. But it is still true that tile assumption that there is only 
on-site interaction is highly artificial. 
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ordering. Therefore one does not find any terms in the Hubbard 
Hamiltonian which explicitly favor ferromagnetism (or any other ordering). 
Our theoretical goal will be to show that magnetic ordering arises as a 
consequence of a subtle interplay between the kinetic motion of electrons 
and the short-ranged Coulomb interaction. It is interesting to compare the 
situation with that in spin systems, where one is often given a Hamiltonian 
which favors some kind of magnetic ordering and the major task is to 
investigate if such ordering really takes place. We can say that the Hubbard 
model formulation goes deeper into fundamental mechanisms of magnetism 
than that of spin systems. It offers a challenging problem to theoretical 
physicists to derive magnetic interaction from models which do not 
explicitly contain such interactions. Perhaps the best justification of 
the Hubbard model as a standard model of itinerant electron systems 
comes from such a theoretical consideration, rather than its accuracy in 
modeling narrow-band electron systems. See also the introductions in 
refs. 34, 35, and 43 for discussions about ferromagnetism in the Hubbard 
model. 

We stress that ferromagnetism is not a universal property of the 
Hubbard model. The Hubbard model is believed to exhibit various 
phenomena including paramagnetism, antiferromagnetism, ferrimagnetism, 
ferromagnetism, or superconductivity, depending on various conditions. 
Such drastic "nonuniversality" of the model motivated us to take the 
present "constructive" approach rather than to prove theorems which 
apply to general Hubbard models. 

The problem of ferromagnetism in the Hubbard model was extensively 
studied by using various heuristic methods. The Hartree-Fock approxima- 
tion discussed above leads one to the so-called Stoner criterion. It says that 
the Hubbard model exhibits ferromagnetism if one has UDv > 1, where Dv 
is the density of states of the corresponding single-electron problem 
measured at the Fermi level (of the corresponding noninteracting system). 
Although the criterion cannot be trusted literally, it guides us to look for 
ferromagnetism in models with not too small U and/or large density of 
states. 

The first rigorous result about ferromagnetism in the Hubbard model 
was provided by Nagaoka 136~ and independently by Thouless. 153) It was 
proved that certain Hubbard models have ground states with saturated 
ferromagnetism when there is exactly one hole and the Coulomb repulsion 
U is infinite. See refs. 26 and 46 for shorter proofs. Whether the Nagaoka- 
Thouless ferromagnetism survives in the models with finite density of holes 
and/or finite Coulomb repulsion is a very interesting but totally unsolved 
problemjS,39,44,45.54.13.37,25,22) See also the introduction of ref. 35 for a com- 
pact review of this subject. 
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Very recently, Mfiller-Hartmann ~35~ argued that the Hubbard model 
with U =  oo on a one-dimensional zigzag chain exhibits ferromagnetism. 4 
Interestingly, the geometry of the chain is similar to that of one-dimen- 
sional models studied in the present paper. 

R e m a r k .  It should be noted that the Hubbard model is by no 
means the unique formulation for studying strong correlation effects in 
narrow-band itinerant-electron systems. If one recalls how a tight-binding 
model is derived (or supposed to be derived) from a continuum model, 
there is a good reason to study models with more complicated interactions 
than mere on-site Coulomb repulsion. One can even include interactions 
which explicitly favor ferromagnetism, and still formulate interesting 
problems. See ref. 42 for an approach to ferromagnetism in such extended 
Hubbard models. 

1.3. F lat -Band Ferromagnet ism 

In 1989, Lieb proved an important general theorem for the Hubbard 
model at half-filling on a bipartite latticeJ 271 As a corollary of the theorem, 
Lieb showed that a rather general class of Hubbard models exhibits 
ferrimagnetism? See also ref. 40. 

In 1991, MielkC 3~ came up with a new class of rigorous examples 
of ferromagnetism in the Hubbard model. He showed that the Hubbard 
models on a general class of line graphs have ferromagnetic ground states. 
A special feature of Mielke's model is that the corresponding single-elec- 
tron Schr6dinger equation 6 has highly degenerate ground states. In other 
words, Mielke's models have flat (or dispersionless) bands. The original 
results of Mielke's were for the electron number which corresponds to the 
half-filling of the lowest flat band, but later they were extended to different 
electron densities in two-dimensional modelsJ 32~ 

A similar but different class of examples of ferromagnetism in the 
Hubbard models was proposed in refs. 47 and 34. These models were 
defined on a class of decorated lattices, and were also characterized by flat 
bands at the bottom of the single-electron spectrum. In a class of models 

4 Although Miiller-Hartmann's argument is quite interesting, it does not form a mathemati- 
cally rigorous proof (as far as we can read off from ref. 35). The argument involves an 
uncontrolled continuum limit of a strongly interacting system. To make it into a rigorous 
proof seems to be a nontrivial task. 

5 Ferrimagnetism is a kind of antiferromagnetism on a bipartite lattice such that the numbers 
of sites in two sublattices are different. 

6 Here (and throughout the present paper) we are talking about the genuine one-particle 
problem, not an effective (and usually ill-defined) one-particle problem in an interacting 
system which is often discussed in heuristic works. 
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in two and higher dimensions, it was proved that the ferromagnetism is 
stable against fluctuation of electron numbersJ 47"34J 

The examples of ferromagnetism in refs. 30-32, 47, and 34 are common 
in that they treat special models with flat lowest bands. 7 The ferromagnetism 
established for these models is now called flat-band ferromagnetism, t22~ 
There is a general theorem due to Mielke ~33J which states a necessary and 
sufficient condition for a Hubbard model with a flat lowest band to exhibit 
ferromagnetism when the flat-band is half-filled. Although flat-band ferro- 
magnetism sheds light on very important aspects of the role of strong inter- 
action in itinerant electron systems, it relies on the rather singular assump- 
tion that the models have completely flat bands. As we discuss in Section 2.1, 
we do not have true "competition" between the kinetic energy and the 
Coulomb interaction. 

If one adds a small perturbation to the hopping Hamiltonian of a flat- 
band model, one generically gets a model with slightly dispersive lowest 
band. It was conjectured ~47'34~ that such models with nearly flat bands 
exhibit ferromagnetism, provided that the Coulomb interaction U is large 
enough. Kusakabe and Aoki ~24'23~ presented a detailed study of this 
problem by numerical experiments and careful variational calculations. 
Their results provide strong support for the conjecture that the flat-band 
ferromagnetism is stable against small perturbations to the band structure. 

We stress that this is a very delicate conjecture for the following 
reasons. 

�9 When the ground states are ferromagnetically ordered, there 
inevitably exist spin-wave (magnon, or Nambu-Goldstone)  modes 
whose excitation energies are of order L -2, where L denotes the 
linear size of the lattice. The total energy of the perturbation, on the 
other hand, is always proportional to the system volume L a. This 
means that the total perturbation always exceeds the energy gap 
when the system size becomes large. Such a situation can never be 
dealt with naive perturbation theories. 

�9 When the lowest band is nonflat, the model with U = 0  exhibits 
Pauli paramagnetism. It is strongly believed that, for sufficiently 
small U, the ground states of the models (in finite volumes) are spin 
singlet. Therefore one must have sufficiently large U to get 
ferromagnetism. This means that the problem is a truly nonpertur- 
bative one. 

In other words, one must directly face the notoriously difficult problem of 
"competition" between the kinetic energy and the Coulomb interaction. 

7 Lieb's examples also have flat bands in the middle of the single-electron spectra. 
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Technically speaking, this nature of the problem inhibits one from making 
use of the common strategy of constructing exact ground states by mini- 
mizing local Hamiltonians. 8 This strategy has been used to derive exact 
ground states of various (extended) Hubbard m o d e l s  ~6"42'4s'5~ a s  well as 
in our early w o r k  ~47'34) o n  the fiat-band Hubbard models. While there are 
rigorous perturbation theories for various many-body problems, including 
classical and quantum spin systems and quantum field theories, there is, as 
far as we know, no general theory which enables one to control generic 
perturbation in models which exhibit continuous symmetry breaking. 

1.4. About  the Present Paper 

In the present paper, we report the first important step toward the 
solution of the above problem about the stability of fiat-band ferro- 
magnetism. We treat models with nearly fiat bands obtained by adding 
almost arbitrary perturbations to the hopping matrices of the fiat-band 
models. For  sufficiently large U, we prove that the ferromagnetic state is 
locally stable. More precisely, we show that the lowest energy among 
ferromagnetic states is strictly less than the lowest energy among states 
with a single flipped spin. The local stability, along with the global stability 
established for the fiat-band models, strongly suggests that the ferro- 
magnetic states are the true ground states of the present models for suf- 
ficiently large U. (See the remark below.) We also prove that, in a certain 
range of the parameter space, the spin-wave dispersion relations of the 
present models behave exactly like those in the Heisenberg ferromagnet. 
This confirms the conjecture of Kusakabe and Aoki. ~'-31 These results were 
first announced in ref. 49. 

As far as we know, this is the first time that the (local) stability of 
ferromagnetism is proved in truly nonsingular Hubbard models, over- 
coming the competition between the kinetic energy and the Coulomb inter- 
action. We also note that this is one of the very few rigorous and robust 
works in which nonperturbative aspects of many-electron problems are 
treated. Recently there have been remarkable progress in rigorous treat- 
ment of interacting many-fermion systems based on renormalization group 
techniques. However, these treatments deal only with weak coupling 
phenomena such as the Tomonaga-Lutt inger  liquid ~4~ and superconduc- 
tivity.~ lO~ 

The present paper is organized as follows. In Section 2, we restrict our- 
selves to the simplest one-dimensional models and discuss our main results 

8 It turned out that there are exceptions to this statement. ~5~ See the remark at the end of 
Section 1.4. However, we still believe that the above comment is true for generic models. 



Stability of Ferromagnetism in Hubbard Models 543 

and the ideas behind the proof. We have tried to make this section 
accessible to a wide range of readers. In Section 3, we introduce a general 
class of models in arbitrary dimensions and state our rigorous results 
precisely. Sections 4-10 are devoted to the proof of our theorems. We have 
carefully organized the lengthy proof so as to make it as readable as 
possible. One can read off the organization of these sections by taking a 
look at the table of contents. In general, earlier sections contain physically 
interesting ideas, and later sections contain technical materials. A browse 
through Sections 4-6 should give the reader a clear idea about the detailed 
structure of our proof. 

Remark.  After the completion of the present paper, we finally suc- 
ceeded in proving the global stability of ferromagnetism in Hubbard 
models obtained by adding a special perturbation to the flat-band 
models. 15j~ We stress that this new result does not diminish the importance 
of the present work. Even for the models treated in the ref. 51 the only way 
(that we know of) to prove meaningful lower bounds for spin-wave excita- 
tion energy is via the machinery developed here. The robustness of the pre- 
sent results (in the sense that we allow arbitrary weak translation-invariant 
perturbation) is also important. 

2. S T A B I L I T Y  OF F E R R O M A G N E T I S M  IN 
O N E - D I M E N S I O N A L  M O D E L S  

In the present section, we discuss our main results and the basic ideas 
of their proof  in the context of simplest one-dimensional Hubbard models. 
The advantage of restricting ourselves to one-dimensional models is that 
we can discuss the essence of our theory without being bothered by many 
technical details. In particular the analysis of the band structure (Sec- 
tion 2.3) and the construction of localized bases (Section 2.4) can be carried 
out in an explicit and elementary manner thanks to special features of the 
simple models. These explicit calculation will be a good introduction to 
more elaborate analyses in the general class of models. Fortunately, the 
ideas developed in one-dimensional models can be used in the study of the 
general models in higher dimensions with only technical modifications. 

We have.  tried to make the present section self-contained and 
accessible to a wide range of readers. We urge the reader to take a look at 
this section, whether or not he or she is planning to study the later sections. 

We note that what we present in this section is far from a complete 
mathematical proof. We often neglect "small" contributions without any 
justification, and some of the formulas are not perfectly correct (in view of 
the rigorous analysis presented in the later sections). Nevertheless we 
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believe that the material presented here will give a clear idea about the 
philosophy and the structure of our proof. 

2.1. Models  and Main  Results 

We define the simplest two-band models in one dimension and 
describe what we can prove about the stability of ferromagnetism and the 
spin-wave dispersion relations. We stress that the restriction to one dimen- 
sion is by no means essential. All the results here extend to corresponding 
models in higher dimensions (i.e., two, three, or even higher). The reader 
who is not planning to study the later sections is invited to take a brief look 
at Section 3, especially at Figs. 7-9 of two-dimensional lattices and band 
structures. 

Let L be a fixed odd integer, and denote by 

{ _,,0,1 . . . . .  Ao= 2 .... ' c Z  (2.1) 

the chain of length L (identified with a set of integers). We also define 

1 1 3  L} 
A'=A~ - -L -F1  ..... 2 ' 2 ' 2  ..... 2 (2.2) 

which is the chain obtained by shifting Ao by 1/2. Our lattice A is obtained 
by "decorating" the chain Ao by the sites from A' as A = A o u A ' .  See 
Fig. 1. One may regard our lattice structure as mimicking that of an oxide, 
where sites in A,, correspond to metallic atoms and sites in A' correspond 
to oxygen atoms. We have no intention of building models which are 
realistic from the viewpoint of condensed matter physics. But this analogy 

t t t t t 

W V W W W W W W W W W 
V V V V V 

Fig. 1. The one-dimensional lattice studied in Section 2. We identify the leftmost site with the 
rightmost site to get a closed chain. The black dots represent sites in A,, (metallic atoms) and 
the gray dots represent sites in A' (oxygen atoms). There are two types of hopping t and s 
and on-site (one-body) potential V. In addition we have on-site Coulomb repulsion U >  0 at 
each site. There are 2L sites in the lattice, and we put L electrons in the system. (Here L = 5.) 
For the flat-band models characterized by s = 2t, V=  (2 2 -  2) t with 2 > 0, t > 0, the ground 
states of  the models are proved to be ferromagnetic. Here we prove the local stability of  
ferromagnetism for models obtained by adding small perturbations to the fiat-band models. 
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proves to be helpful in understanding various aspects of our work, includ- 
ing the basic mechanism of ferromagnetism. 

We shall study the Hubbard model on A with the Hamiltonian 

H = t  y '  * (c , . ,~c , .+l . ,+h.c . )+s ~', (c~.~c.,.+(1/2),~+h.c.) 
x ~ A o  .x'~A 

~= T,J. o = t , $  

+ V ~ nx, ,+  U ~ n,.,~nx.~ (2.3) 
x E A '  x ~ A  

a = t , l  

where we use periodic boundary conditions to identify x with x -  L if 
necessary. Here c,.,* and c,.~ are the creation and the annihilation 
operators, respectively, of an electron at site 9 x e A with spin ~r = T, ~. They 
satisfy the standard fermionic anticommutation relations. [See (3.11), 
(3.12) for details.] The corresponding number operator is n,. ~= c,*. ~c.,. , .  
Finally, "h.c." in (2.3) stands for the Hermitian conjugate. 

The real parameters t and s represent the amplitudes that an electron 
hops between neighboring sites in Ao (separated by a distance 1) and 
between neighboring sites in A (separated by a distance 1/2), respectively. 
The real parameter V is the on-site potential energy for the sites in A' 
(see Fig. l). The first three terms in (2.3) determine single-electron 
properties of the model. The fourth term is the on-site Coulomb inter- 
action characteristic in the Hubbard model with the interaction energy 
U>0.  

We consider many-electron states with the total electron number fixed 
to L. (See the end of Section 3.2 for an explicit construction of the Hilbert 
space.) Since there are 2L sites in the lattice A, the present electron number 
corresponds to the quarter-filling of the whole bands (or the half-filling of 
the lower band). This electron number is natural if one imagines that each 
site in A o (which corresponds to a metallic atom) emits one electron to the 
band. lo 

9 More precisely, these operators correspond to an orbital state around the atom at x. We 
have here assumed that each orbit is nondegenerate. Usually models based on such an 
assumption are referred to as single-band Hubbard  models. We find this terminology con- 
fusing since our model indeed has multiple bands in its single-electron spectrum. We think 
a better terminology is "single-state" Hubbard  model. Then the models we consider are 
classified as "single-state mult iband Hubbard  models." 

[0 Of  course one gets the same electron number  if each site in A' emits one electron. But we 
want to insist on the present picture since it gives the desired electron number  for the 
general class of models studied later. Moreover, the picture to identify Ao sites as metallic 
a toms is consistent with the nature of  the "ferromagnetic ground states." 
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The first result about ferromagnetism deals with the so-called flat-band 
Hubbard  model. To define the model, we introduce a parameter  2 > 0, and 
set ~ 

s = 2 t ,  V = ( 2 2 - 2 )  t (2.4) 

The following strong result was proved in refs. 47 and 34. 

T h e o r e m  2.1 (Flat-band ferromagnetism). Let t > 0  and 2 > 0  be 
arbitrary, and let s and V be determined by (2.4). Then, for any U >  0, the 
ground states of the Hamiltonian (2.3) exhibit saturated ferromagnetism, 
and are nondegenerate apart  from the trivial spin degeneracy. 

More precisely, a state is said to "exhibit saturated ferromagnetism" 
if the total spin Stot of the state takes the maximum possible value 
S ..... = L/2.  See the end of Section 3.2 for a precise definition of Stot. See 
also Theorem 3.1 for the general theorem and Section 5.4 for a proof. The 
flat-band ferromagnetism has been established for a general class of models 
including those in higher dimensionsJ 33~ In a class of models in two and 
higher dimensions, the existence of ferromagnetism for lower electron den- 
sities as well as the existence of a paramagnet ism-ferromagnet ism trans- 
ition (as the electron density is changed) are established rigorouslyJ 32'47"34~ 

A model determined by the conditions (2.4) with t > 0 and 2 > 0 has a 
very special feature that the ground states of the corresponding single- 
electron Schr6dinger equation are L-fold degenerate. In other words, the lower 
band (in its single-electron spectrum) is dispersionless (or flat). We shall see 
this explicitly in Section 2.3. See Fig. 2a in Section 2.3. As a consequence, the 
many-electron ground states in the noninteracting model with U = 0 are highly 
degenerate. The total spin can take any of the allowed values Stot = 1/2, 
3/2 ..... L/2. This is a kind ofparramagnetism, but is certainly different from the 
Pauli paramagnetism which allows only unique (or twofold degenerate) 
ground state(s) with the minimum possible S,ot (which is 0 or 1/2). 

The role of the Coulomb interaction U in flat-band ferromagnetism 
is to lift the above-mentioned degeneracy and to "select" only the ferro- 
magnetic states as ground states. This is why even infinitesimaly small U is 
sufficient for stabilizing ferromagnetism. Although the flat-band ferro- 
magnetism focuses on a nontrivial and important  effect caused by electron 
interactions, it avoids dealing with the truly difficult problem about 
"competition" between the kinetic energy and the electron interactions. 

H The model studied here is obtained by setting d = v = 1 in the general class of models intro- 
duced in Section 3,2 and studied in the later sections. In the Hamiltonian of the later 
sections, the energy is shifted by a constant so that the lowest band in the flat-band models 
has vanishing energy. 
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Let us now turn to the models with nearly flat bands obtained by per- 
turbing the above models. In order  to simplify the discussion, we consider 
the simplest possible perturbation.  ~'- Instead of  (2.4), let us set 

s=2t,  V = ( 2 " - - 2 + p ) t  (2.5) 

where the parameter  p measures the strength of  the perturbation.  As we see 
soon in Section 2.3, the lower band is no longer flat for p r 0. 

Let Em~n(S,o,) denote the lowest energy among  the L-electron states 
with a given total spin Sto,. The Pauli exclusion principle implies that, for 
a model  with p q:0 and U = 0 ,  these energies satisfy the monotonic i ty  
inequality 

E m i n ( 1 / 2 )  < Emin(3/2) < ..- < E m i n ( S  . . . .  - -  1 ) < E m i n ( g m a x )  (2.6) 

with S . . . .  = L/2. This is nothing but the Pauli paramagnetism. 
We want  to examine if these strict inequalities can be reversed as a 

consequence of  on-site Cou lomb  interaction. We stress that this is a truly 
nonperturbat ive problem in which one must  directly face the "competi t ion" 
between the kinetic energy and the interaction. In  fact it is quite easy to see 
that we must have a sufficiently large U to stabilize ferromagnetism. 

T h e o r e m  2.2  (Instability of  "ferromagnetic ground states" for 
small U). Let t > 0 and 2 > 0 be arbitrary,  and let s and V be determined 
by (2.5). We assume p ~ O .  Let 

g(p) = (t/2) 14 - {(2-" + 4) 2 + 2p(2 2 - 4 ) }  1/_, + (2-' + 2p2-')1/2 I 

= {4 / (2- '+4)}  t lpl +O(p'-) 

denote the band  width of  the lower band. Then for U satisfying 
0<~ U<g(p), we have 

Emin(S ..... - 1 ) < E m i , ( S  .... ) (2.7) 

This is the one-dimensional  version of  Theorem 3.3. 
We call the states with Sto, = S . . . .  which have the energy Emin(Smax) 

the "ferromagnetic g round  states."13 It is easily found that the 
"ferromagnetic ground states" are nondegenerate  apart  from the trivial 
(2S ... .  + 1 ) = (L + 1 )-fold degeneracy. (See Lemma 3.2.) 

~2 In the general treatment described in the later sections, we allow completely general pertur- 
bations with translation invariance and certain summability. See Section 3.2. 

~' This is a slight abuse of the word, since the states are not necessarily the true ground states. 
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Theorem 2.2 states that the "ferromagnetic ground states" are unstable 
against a single-spin flip. Although the inequality (2.7) does not tell us 
what the ground state of the model is, it does establish that the 
"ferromagnetic ground states" are not the true ground states. 

Of course results like Theorem 2.2 can be proved rather easily by the 
standard variational argument. What is really interesting (and difficult) is 
to get a reversed inequality for models with larger values of U. The follow- 
ing is the most important result of the present paper. 

Theorem 2.3 (Local stability of "ferromagnetic ground states"). 
Let t>O, and let s and V be determined by (2.5). We further assume that 
;~> ;~2, Ipl ~<p,, ,~ Ipl <~P~, and 

U~ KI )tzt Ipl (2.8) 

where 22, Pl, Pl,  and Kt are positive constants. ~4 Then we have 

Emin(Sma x - -  1) > Emin(Smax) (2.9) 

This is the one-dimensional version of Theorem 3.4. 
The bound (2.9) states that the "ferromagnetic ground states" are 

stable under a single-spin flip. Clearly the most important condition for the 
above local stability theorem is (2.8), which says we must have sufficiently 
large Coulomb interaction (compared with the bandwidth oc [Plt). This is 
natural since the opposite inequality (2.7) holds if U is small. We can say 
that the above local stability theorem establishes a truly nonperturbative 
result in which the "competition" between the kinetic energy and the elec- 
tron interaction is successfully dealt with. 

Recall that both the energies Emin(Sma x - -  1) and Emin(Sma x) grow 
proportionally to the lattice size L d, while their difference should be 
proportional to L--'. In such a situation, there seems to be little hope in 
proving the desired inequality (2.9) for large L by combining a suitable 
lower bound for the left-hand side and an upper bound for the right-hand 
side. However, there are some nice features that save our task from being 
impossible. In the subspace with S t o  t = S . . . . .  the on-site Coulomb repulsion 
is completely irrelevant because of the Pauli principle. Therefore the energy 
Emin(S  . . . .  ) in the right-hand side of (2.9) is nothing but the ground-state 
energy of the corresponding noninteracting spinless fermion, which energy 
is known exactly (at least formally). In the subspace with S t o  t = S m a  x - 1, 

the on-site repulsion does play a highly nontrivial role, but one can still 

14 We use the same symbols for the constants as in the later sections. In general models, the 
constants depend on the basic model parameters d, v, and R, but here they are simply 
constants. 
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imagine that its effect is (at most) of order 1 rather than of order L d. This 
is because (in a suitable representation) there is only one electron with 
down spin, and this single electron interacts with the rest of the electrons 
with up spin. This intuitive observation is indeed the basic starting point 
of our proof. 

We are also able to establish rather strong results about the excita- 
tion energy above the "ferromagnetic ground states." Let g ( =  { k =  
2rm/(L- 1)117 ~ Z s.t. ]nl ~< ( L -  1)/2} be the set of wave numbers allowed 
in the present model. For k ~ :U, we denote by J~  the Hilbert space of the 
states which have a definite crystal momentum k and which contain (L - 1 ) 
up-spin electrons and one down-spin electron. [See (3.34) for a precise 
definition.] We let Esw(k) be the lowest energy among the states in ~gk. 
Note that Esw(k) can be interpreted as the energy of an elementary spin- 
wave excitation. The following theorem essentially determines the behavior 
of Esw(k). 

T h e o r e m  2.4 (Bounds on the spin-wave energy). Let t > 0 ,  and let 
s and V be determined by (2.5). Assume that 2 ~> 23, [p] <~Po, and K22t >~ 
U>~A322t IPl, where 23, Po, K2, and A 3 are positive constants. Then we 
have 

F2~4 sin <<,Esw(k)-Em~n(S .... ) ~ < F , - z \ s m ~  ) (2.10) 

with 

-• A6Jflt IP]2 (2.11 ) F~ = 1 + +A52 Ip[-t U 

and 

A2 A3 ~'2t IPl 
F2= 1 - A  I Ipl 2 U (2.12) 

where A i ( i=  1 ..... 6) are positive constants. 

This is the one-'dimensional version of Theorems 3.5 and 3.6. 
It is remarkable that we have F ~ - F 2 -  ~1  if 2>>1, 21p[,~l ,  and 

U>> )fit Ipl. In this case the bounds (2.10) imply 

4U 
Esw( k ) - Emin( Smax ) ~- --~- ( sin ~ ) 2 = 2Jefr ( sin ~ ) 2 (2.13) 

822/'84/3-4-15 
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which is nothing but the spin-wave dispersion relation for the 
ferromagnetic Heisenberg spin system. (See Section 2.6.) This result is very 
important since it guarantees that our Hubbard model develops low-lying 
excited states with the precise structure expected in a "healthy" ferro- 
magnetic system. 

Theorem 2.4 is also meaningful when applied to the fiat-band model 
with p = 0 .  The theorem guarantees that the exchange interaction 
Jeff-~ 2U/3~4 [which appears in (2.13)] remains finite even for the flat-band 
models, thus confirming the conjecture of Kusakabe and Aoki. 1"-3~ We can 
conclude that the ferromagnetism in the fiat-band models is not at all 
pathological 15 in spite of the rather artificial condition imposed on the 
models. 

The reader may notice that Theorem 2.4, unlike Theorem 2.3, requires 
an upper bound for the Coulomb interaction U. There indeed is a physical 
reason for this limitation. Our proof of Theorem 2.4 is based on an explicit 
construction of the state which approximates the elementary spin-wave 
excitation. 

Our approximate excited state, however, takes into account the effect 
of interaction U in a rather crude way. This inhibits us from getting precise 
estimate in the models with larger values of U. That our analysis is not 
efficient for large U can be easily seen from our formula for the effective 
exchange interaction Jeer= 2U), -4, which is proportional to U. For  larger 
values of U, we expect Jeff to be "renormalized" to a less increasing func- 
tion of U. In particular, Kusakabe and Aoki t23~ pointed out that Je,- 
remains finite even in the limit UT oe. A proof of this fascinating conjecture 
might be possible if one extends the present work by devising a more 
efficient approximate excited state which takes into account the large-U 
"renormalization" in a proper manner. 

2.2. Discussions and Open Problems 

The inequality (2.9) stated in our main Theorem 2.3 only establishes 
the local stability of the "ferromagnetic ground states," not the desired 
global stability. However, the strong result for the fiat-band models sum- 
marized in Theorem 2.1 suggests that the local stability (2.9) implies that 
the "ferromagnetic ground states" are the true ground states. In the course 
of constructing our proof of the local stability theorem, we have developed 
a heuristic picture about the mechanism underlying ferromagnetism in our 

t5 We recall that Nagaoka's example of ferromagnetism is known to have a pathological 
spin-wave dispersion relation. ~36'221 As for the other rigorous examples, no results about 
spin-wave excitations are known. 
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model. The picture, which is briefly described in Section 2.6, also indicates 
that ferromagnetic states are the true ground states. As we have noted in 
the remark at the end of Section 1.4, this conjecture has been verified for 
a special class of perturbations. 

It is interesting to look at our rigorous results in the light of tradi- 
tional approaches to ferromagnetism discussed in Sections 1.1 and 1.2. In 
order to guarantee the existence of ferromagnetism in our model, we 
assumed that p is small enough so that the band is nearly fiat and the 
Coulomb interaction U is large enough. Since a nearly flat band has large 
density of states, our requirement shares something in common with the 
Stoner criterion. Of course there is no hope that the criterion UDF> 1 
gives reliable conditions for the range of parameters where ferromagnetism 
takes place. The improved criterion for ferromagnetism due to 
Kanamori 1~8~ and the accompanying formula for effective U do not seem to 
coincide with our results. 

If one looks into the proof of the theorems, however, it becomes clear 
that there is a picture quite similar to that developed by Heisenberg. We 
use a basis in which each electron is treated as almost localized at each lat- 
tice site in A,,. The basic mechanism for stabilizing ferromagnetism comes 
from the "exchange" part of the interaction Hamiltonian, which is in prin- 
ciple the same as what Heisenberg treated. See also Section 2.6. 

It is amusing that the ferromagnetism in our model may be understood 
in terms of the above two heuristic pictures. Usually the band electron pic- 
ture and the Heisenberg's localized electron picture of ferromagnetism are 
regarded as incompatible with each other. 

All the rigorous results summarized in the previous subsection strongly 
suggest that our Hubbard model exhibits nonpathological ferromagnetism 
in the vicinity of the flat-band models characterized by (2.4). However we 
are far from understanding precise (necessary and sufficient) condition for 
ferromagnetism. We believe that the one-dimensional Hubbard model with 
the Hamiltonian (2.3) at quarter-filling can be studied as a paradigm model 
for itinerant electron ferromagnetism (in insulators). To determine the 
region (in the three-dimensional parameter space spanned by s, II, and U, 
as well as the sign of t) where ferromagnetism takes place is a challenging 
and very illuminating problem that can be studied by various methods, 
including numerical ones. 

One might regard the models with only nearest neighbor hoppings 
(obtained by setting t = 0 )  as "standard." However, the Lieb-Mattis 
theorem ~'-8> ensures ~6 that such models do not exhibit ferromagnetism for 
any values of V and U. This shows that the appearance of ferromagnetism 

~ Rigorously speaking, this is true only for the models with open boundary conditions. 
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is a rather delicate phenomenon which cannot be determined by simple 
criteria like the Stoner criterion. 

There is a perturbative argument 1521 (similar to that in Section 2.6) 
which suggests that the Hubbard  model with Hamiltonian (2.3) exhibits 
ferromagnetism in a finite but not very large region including the fiat-band 
models. Perhaps this observation is consistent with the empirical fact that 
most of the known insulators appear  to be antiferromagnets. '7 

The electron number we have chosen corresponds to the half-filling of 
the lower (nearly flat) band. This is also the case for the general class of 
models studied in the later sections. From the standard band-theoretic 
point of view, an electron system with such a filling becomes metallic. 
When the Coulomb interaction U is sufficiently large in our models, 
however, the strong correlation makes the lower band (effectively) fully 
filled. Since the lower band is separated by an energy gap from the upper 
band, the system is expected to become an insulator. In this sense, our 
models provide examples of M o t t - H u b b a r d  insulators. This is also true for 
the general models in higher dimensions. 

We expect to get ferromagnetic metals by lowering the electron density 
in the present models. In the flat-band case 134~ we found that the model 
must be at least two dimensional in order for ferromagnetism to be stable 
against the change of electron density. We argued that the one-dimensional 
flat-band model exhibits ferromagnetism only when the lower band is 
exactly half-filled, and exhibits paramagnet ism for any lower electron den- 
sities. ~8 We believe that this dimensional dependence is a special feature of 
the fiat-band models in which electrons "cannot move" (in some sense). 

We believe that our Hubbard  models with nearly fiat band in any 
dimensions with lower electron density are among the best candidates of 
itinerant electron systems which exhibit metallic ferromagnetism. Unfor- 
tunately we have no rigorous results in this direction. 

Finally we recall that, in dimensions one or two, ferromagnetism in 
any short-ranged model with a rotation symmetry is inevitably destroyed 
by infinitesimally small thermal fluctuation. 1~'2j~ In order to have 
ferromagnetism stable at finite temperatures, we must treat models in (at 
least) three dimensions. We expect that ferromagnetism in the three-dimen- 
sional versions of our models survives at finite temperatures, but have no 
rigorous results. 19 

~7 Recently there have appeared a few organic compounds which are insulating ferromagnets. 
~8 We did not give a proof of the latter statement in ref. 34, but we believe there is no essential 

difficulty in proving it rigorously. 
~9 We recall that the existence of a ferromagnetic order in the ferromagnetic quantum 

Heisenberg model at low enough temperatures is not yet proved. ~9~ It is very likely that the 
corresponding problem in the Hubbard model is much harder. 
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When one recalls the fact that we are so familiar in our daily lives with 
metallic ferromagnetism stable at room temperatures, to prove the exist- 
ence of metallic ferromagnetism (say, in our models with lower electron 
densities) at low enough temperatures may appear as a modest goal. From 
the theoretical and mathematical points of views, however, the problem 
looks formidably difficult. It seems that not only mathematical techniques, 
but a fundamental understanding of the "physics" of itinerant electron 
ferromagnetism are still lacking. 

2.3. Band S t r u c t u r e  in the  S ing le -E lec t ron  Problem 

Before going into the full many-body problem, it is useful to 
investigate the corresponding single-electron problem. The single-electron 
Schr6dinger equation corresponding to the Hubbard model (2.3) with the 
parametrization (2.5) is written as "-~ 

Q(~o,._t+~o,.+l)+2t(qL,. (u2~+~ox+(1/2 0 if x~Ao 
e c P ' = ~ ( 2 2 - 2 + p )  tCp~.+2t(~O,._ii/21+q~,.+(l/20 if xEA' (2.14) 

where e is the energy eigenvalue. By using the translation invariance of 
Eq. (2.14), we can write an eigenstate (cp.,_).,.~A in the form of the Bloch 
state as qL,.=eik"v,.(k) with k~ 3(# and v.,.(k) such that v.,.+ l (k )=  v.,.(k) for 
any x ~ A. The Schr6dinger equation in k-space which determines e and 
t,.,.(k) is 

[ vo(k) ~ ~ 2 t c o s k  22tcos(k/2) "~[ vo(k) "~ (2.15) 
e \u1/2(k)  j = \2).t cos(k/2) (2"- - 2 + p) tJ\v,/2(k)J 

The eigenvalue problem (2.15) can be solved easily, and for each 
k ~ o,~4 r ,  we find two energy eigenvalues 

,( eL2(k)= ~ 22-2+p+2cosk 

++_ {[ 2"--2(l +cosk) + p]'- +4 (22cos ~) "-) '/2) (2.16) 

where 1, 2 are the band indexes with 1 (respectively 2) corresponding to the 
- (respectively + )  sign. The energy ej(k), as a function of k, is usually 
called the dispersion relation of the j t h  band. When p = 0, (2.16) becomes 

20 See Section 4.1 if it is not clear how the single-electron Schr6dinger equation is derived. 
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el(k) = - - 2 t  and e2(k  ) = 2 2 t + 2 t  cos k. Note that the lower band is com- 
pletely flat (dispersionless), and there is an energy gap 22t between the two 
bands as in Fig. 2a. When the perturbation to the flat-band model is suf- 
ficiently small (i.e., IPl t~22t), the lower band is nearly flat, and there 
remains a gap close to 22t as in Fig. 2b. See Lemma 4.1. 

We choose an eigenvector v~~ (V~o~ v~~ corresponding to 
the eigenvalue el(k) as 

f/v~o~ ~ (l(F(k)+{F(k)2+4122-1cos(k/2)]2}l12)) 
vl~ = tvC~ s = - - 22 -  l cos(k/2) (2.17) 

\ I / _ t  / 

where F(k)= 1 - 2 ( 1  + cos k)/22 + p/2 z. Note that we did not normalize the 
vector vl~ The eigenvector v ~l/2~(k) which corresponds to the eigenvalue 
ez(k) can be written in terms of vc~ as 

(v'0'p->(k)) 
,"/-')(k)= ,,/2, = \  O,o0)(k)) t,,vii 2 (k)J 

(2.18) 

2.4. Localized Bases for Single-Electron States 

The band structure discussed above plays a fundamental role in the 
corresponding many-body problem as well. But the k-space picture, which 
was very useful in analyzing the band structure, turns out to be not quite 
effective in treating strong short-range interactions. This dilemma (which 
originates from the wave-particle dualism in quantum mechanics) suggests 
the need for a new description of electronic states which takes into account 
the band structure and at the same time treats electrons as "particles" 
rather than "waves." 

a) 

--71" 71" 
k k 

Fig. 2. The dispersion relations et(k), e2(k) in the one-dimensional models. (a) The flat-band 
model with 2=2 ,  p = 0 .  (b) The perturbed model with ) .=2, p =0.2, which has a nearly flat 
lower band and an energy gap between the two bands. 
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Let / z (x )=0  for x � 9  and it(x)= 1/2 for x e A ' .  For  x, y e A ,  we 
define 

r  

(2.) (2.19) x = ~ r .  ~ i t ( . x .  ) ~ , ~ !  d 

where j dk( . . . )  is a shorthand for the sum (2n/L)Zk~Jc ( ' " ) .  Suppose 
that yeAo  is fixed. Then one can regard 21 ~o I)')-- (~O.,:(")).,_~A as (the wave 
function of) a single-electron state which is a superposition of the Bloch 
states e-;k"v~,c,.)t(~ ~k ~) with various k. This means that, for any y ~ Ao, the state 
~o (-') belongs to the Hilbert space of the lower band. By examining the 
definition (2.19), it follows that the collection {q~(Y)}y~A,, forms a (non- 
orthonormal) basis of the Hilbert space corresponding to the lower band. 
Similarly the collection { qr ,,~A' forms a basis of the Hilbert space of the 
upper band. 

Moreover, the states m ")-~ro-"h have rather nice localization "i" - -  x - r  x , , x ~ A  

properties. When p =0 ,  an explicit calculation shows that, for y~Ao,  
~o~,, :'). = I, and ~,:-i ,,I = _  1/2 if [ x - y J  = 1/2 and ~o!, y) = 0 otherwise. (See See- 

Iv) tion4.2, where q~.,?'~ with p = 0  is denoted as ~h,: .) These are the strictly 
localized basis states constructed and used in refs. 47 and 34. 

For p :~ 0, the basis states ~0 ~)') are no longer strictly localized. Expand- 
ing the term [F(k)2 + 4{ 22-~ cos(k/2)} 2] ~/2 in (2.17) into a power series in 
2 .2 and (p/22), we can still prove that the state ~ o(:') = ('~(Y))v-.,. .,-~A is almost 
localized at the site y. More precisely, we have 

I 1 if x = y  
-(,,I +l /A if I x - y l = l / 2  
(e.,: ~- } O ( i p l / ~ 2 )  if I x - y [  = 1 

(smaller,  decays exponentially for I x - y l  > 1 

(2.20) 

when 2 >  1 and 1P1/22 ~ 1. (We take the + sign if y e A '  and the - sign if 
yeAo). This sharp localization property of the states ~pt,,) plays a 
fundamental role throughout our proof. 

Since the states q~ty) with different reference sites y are not necessarily 
orthogonal to each other, it is useful to introduce the dual of the basis 
{q~")}- . We shall construct the dual basis states ~lyl_~.~(yl)_tw.,. .,-~A so that 

X" t~(y)~* (o(.v)=(Jx, x,.] x-" t,~Iy~)* .^cv) _ x holds. [I t  also holds that/-y~,tv,:,- J T.,-, / - - , x E , ' l t " F x  t[] x - - u y ,  y 

Then {O(Y)}:,~3o and {O(Y)}:,~A' automatically form bases of the Hilbert 
spaces for the upper and lower bands, respectively. See Sections 10.1 and 

'~ In a symbol like ~o!,: "~, the upper index y is the "name" given to the state, while the lower 
index x is the argument  in the s tandard wave function representation. When we refer to the 
state itself, we write ~0 c'J. Such a notation is used throughout  the present paper. 
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10.2 for concrete procedures for constructing O~Y~ from the vectors v'~ 
and v' l/El(k). 

For 2 >> 1 and [p[/2 2 ,~ 1, the dual basis state ~';') is localized at the site 
y as 

f l if x = y  
_1/2 if [ x - - y [ = i / 2  ~!, : ,  ~ 

) - 1 / 2 2  if I x - y l = l  
l 

(smaller, decays exponentially for I x - y l  > 1 

(2.21) 

where the + sign is chosen as in (2.20). It should be noted that the states 
~'-"1 are only moderately localized as compared with the sharp localization 
of cp c:'~. Even for p = 0, ,--I ,,~ has nonvanishing exponentially decaying tail. 

R e ma rk .  It is interesting to compare the states cp '-''1 and ~t-"~ with 
Wannier functions/2~ Wannier functions are the standard machinery in 
condensed matter physics for providing the particlelike picture of electronic 
states by also taking into account band structures. 

The Wannier functions co ,,I_ o,I -(cox ).,-~A are constructed as in (2.19), 
but with the vectors v"'l(k) (with u = 0 ,  1/2) replaced by their normalized 
versions v'~(k)/lv'"(k)]. As a consequence {co 'y~} y~Ao and {co':"} ,.~3' form 
orthonormal bases of the Hilbert spaces for the upper and lower bands, 
respectively. As for the localization property, we have 

f l if x = y  

+1/2 if I x - y l  = 1/2 (2.22) 
co!,"' -~ -- 1/(222 ) : ) if I x - y l = l  

(.smaller, decays exponentially for I x - y l  > 1 

which is, roughly speaking, intermediate between those of cp ':'l and ~b~-"L 
Although the orthonormality of the Wannier basis is a clear advantage 

of this machinery, the poor localization property (2.22) is not optimal for 
our analysis of the Hubbard model. The sharp localization (2.20) is so 
important for us that we can give up the orthonormality of bases. 

It is interesting that, in the context of a band calculation, Anderson ''-~ 
suggested using nonorthonormal basis states which are more sharply 
localized than the Wannier states. One can regard our ~0 ~ as a concrete 
(and typical) example of Anderson's ultralocalized functions, used in 
mathematical proofs of ferromagnetism rather than in band calculations. 

In ref. 49, where the main results of the present paper were first 
announced, we claimed that the proof of local stability of ferromagnetism 
is impossible if we use the Wannier states instead of the sharply localized 
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states ~0 u'). We now feel, however, that a similar proof  based on the Wannier 
functions may be constructed if one is careful enough in estimating various 
matrix elements. 

2.5. Representat ion of the Hami l tonian in Terms of the 
Localized Basis 

In order to analyze many-body problems by using the particlelike 
picture developed above, we introduce the fermion operators 

t _ _  a,..<, - ~ (4ol,;"') * .  c:,.<,,t b,.,=.. ~ ~p,,--- <")c. .,',, (2.23) 
y t~ A y G A 

for x e A and a = T, ~. It turns out that these operators obey the standard 
anticommutation relations such as {a~_,,,,b.,,.~} =6.,..y6,.~. This means 
that the "right" annihilation operator to be used with a,..~* is b ...... not 
a.,.~=(a*.,..~)*. 

As we show in Section 5.2, we can rewrite the Hamiltonian (2.3) in 
terms of these new operator as 

H =  ~ t rx ,,ax.~b,,,~+ ~, t T x v a x  ~b,. ,, 
X,  y E "/|o A', y ~ z i  t 

~:  t,l a :  l,l 

+ ~ ~ t t Uy , ,  ,,. ._a ,,ta,,.lb,,. :b:.T (2.24) 
y ,  I), W, .7." E -"| 

Note that there is no hopping between Ao and A' in the hopping parts of 
H. This is because the operators a.,.,~,* and by.,, "know" about the band 
structure. As for the properties of the effective hopping r,. ,,, we only need 
to note that r_,...,.+ i = O ( I p l  t) for x e A o ,  and r.,...,.-- 22t for x e A ' .  

Note that the interaction term in (2.24) is no longer on-site. This fact 
is essential for the appearance of ferromagnetism in these models, The effec- 
tive (four Fermi) coupling gr.~, ,,:,. _ in (2.24) is given by 

. . . . .  = ~ "l~"'~(q)""l'~(:~)* (2.25) 
x E A  

This expression means that the coupling function U:,.,:,._- is determined by 
the overlap between the four states ~u,~, ~b,,), r and q~l:~, where the for- 
mer two states are created and the latter two states are annihilated. Since 
each state q~O,) or ~.v) is localized at the reference site y, we find that 
0".~ ,.,.__ is also short ranged. We can say that our representation success- 
fully took into account the particlelike nature of electrons. We also note 
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that the coupling function satisfies the translation invariance U.,,,,.,,.:= 
~]_v+p,v+p;w+p,z+p for any p e Z .  

Let us assume 2 ~ 1 and [pl/22 ~ 1. Then we can substitute the proper- 
ties (2.20) and (2.21) of the basis states into (2.25) and evaluate 0,,�9 
explicitly as 

/ ' r  f f ~ . j ( O ) ~ ( O ) l  t n ( O ) r a ( O ) ~ *  U uo.o:o.o-~wo "to ~wo v'o ; -~ (2.26) 

U 
�9 ~ [ [ ~ ( O ) T r ~ ( 1 ) g r a ( O ) r a ( l ) ]  ~ - - " ~ _  (2.27) v l ;o ,  l ~ v -  i / 2 v - l / 2 ~ v -  j / 2 v - x / 2 J  ;~4 

U r T / ~ ( 0 ) ~  ( 1 ) [  r n ( 0 ) r n ( O )  ~ *  (2.28) Uo 1-o o ~ 2_~ �9 , , " 'WO WO *.WO WO ! ---~ - - - -  

•[0 0"0 I ~ (0)  ~ (0)  . ^ ( 0 )  ^ ( l  ) ) *  -L r~,(O) ~7-~(0)1 r . ( O )  .t*( 1 ) ~* ~ ~ U{q~o ~Oo (~'o ~'o , , . - -  ~ W I / 2 W I / 2 ~ " t " I / 2 W I / 2 1  J 

-~ 0 +~-~ (2.29) 

and 

U 
Oo.,;m,j/2 ~- 01/2,1/2:o, 1 ~ ~2 (2.30) 

These are the components of U which play important roles when we 
investigate low-lying excited states of our Hubbard model. Note that 
U'o.o;o.l and 0O.l:O.o are drastically different. This asymmetry, which 
originates from the difference in the localization properties (2.20), (2.21) of 
the states ~o c''~ and O(y), is important for our proof. 

2.6. Perturbat ive Analysis and Effect ive Spin Hami l tonian 

At this stage we shall develop a heuristic theory which reveals why our 
Hubbard model exhibits a stable ferromagnetism. This subsection is dif- 
ferent from all the others in that it is devoted to arguments which are not 
yet made rigorous. This, however, allows us to go beyond our technical 
limitation, and discuss the stability of ferromagnetism beyond a single-spin 
flip. 

Here we focus on the region of parameters characterized by ]p[t ,~ 
U ~ 22t. Recall that ]p] t, U, and 22t roughly represent the bandwidth of the 
lower band, local Coulomb interaction, and the band gap, respectively. By 
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examining the representation (2.24) of the Hamilton(an, we extract the 
most dominant  part  as the "unperturbed" Hamilton(an 

Ho = Y', * r�9 ..... b: . , ,+  ~ O�9 (2.31) 
X , ) ' E A "  X E / I  a = L l  

Here we introduced the pseudo number operator f i , . , -  t - a,.,~bx.~. Although 
h,.., is not Hermit(an, it works in exactly the same way as the standard 

�9 and b.,.~ as creation and ann(hi- number operator  as long as one uses a�9 
lation operators, respectively�9 By recalling r.,..,_=;t2t for x e A '  and 
~.,..,.:.,. ,. = U, we find that the conditions for minimizing Ho are (i) there are 
only electrons from the lower band, i.e., those created by a,.~* with x e A o ,  
and (ii) there are no doubly occupied sites in the language of fi.,.~. Since 
the number of electrons L is the same as the number  of the sites in Ao,  such 
states can be written as linear combinations of the states 

~ a  = ax.,rix) 
- o 

Here the multi-index a =  (a(x))�9 with a ( x ) =  T, ~ represents spin con- 
figurations. Clearly we have H o ~ , = 0  for any a. The unperturbed 
Hamilton(an Ho has 2L-fold degenerate ground states�9 

Let us examine how the degeneracy is lifted when we consider the 
remainder of the Hamilton(an, which is 

n p e r  t = ~ "t rx ,,ax.,,b, ~ + ~,  - , f �9 U,,v;,,.:a,,rao.~b,. ~b:. T (2.33) 
X, y ~ / I  o y .V .  W, Z E el 
a = t, J. ( e x c e p t  y = ,, = w = --) 

We wish to develop a standard first-order perturbation theory, but using the 
nonorthonormal basis consisting of the states (I-I.,-~A * * a.,..T)(I-Ix~ 8 a.,. j) q~ . . . .  
where A, B are arbitrary subsets of A. Let P0 be the projection operator "-2 
(defined with respect to the present basis) onto the 2L-dimensional ground- 
state space spanned by ~ .  The basic object in the first-order degenerate 
perturbation is then the effective Hamilton(an nen-=PoHper tPo .  Note that 
Hr is not a self-adjoint operator. This is inevitable since we are developing 
a perturbation theory based on a nonorthonormal  basis. Since the standard 
perturbation theory can be applied to non-Hermit(an matrices as well, the 
situation is by no means pathological. There is a similar perturbation theory 
that uses an or thonormal  basis constructed from the Wannier states. (52~ 

~--" The procedure for defining Po is as follows. Given a many-electron state ~, one (uniquely) 
expands it in terms of the basis states. Then one throws away all the basis states which are 
not of the form ~,,, (2�9 The resulting state is Po~. Note that Po is not an orthogonal 
projection. 
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Obviously a term contributing to H~fr should not affect the locations 
of the electrons. As a consequence, contributions come from the so-called 
"exchange" terms (and the diagonal elements of r.,..y) as 

U ......... (a,..tay.,b,.~bx.T+ay.ra.,.jb:.~b_,.t) Pp (2.34) 
.x', ) '  e Ao  
(X  # . V )  

where Eo=~.,.~A., r,...,, turns out to be the energy of the "ferromagnetic 
ground states." (Figure4 in Section2.7 illustrates how the "exchange" 
terms act on a state.) 

It turns out that the "exchange" term is the ultimate origin of ferro- 
magnetism in our Hubbard model. In the present model, the "exchange" 
takes place between the spins of two electrons in neighboring Ao sites 
(metallic atoms). By recalling that there is a A' site (oxygen atom) in 
between them, one might prefer to call the present process "super- 
exchange. ''c~ While this terminology is also possible, we stress that we never 
get ferromagnetism if the direct hopping between Ao sites [ represented by t 
in the Hamiltonian (2.3)] is absent, as we discussed in Section 2.2. We think 
there is a much more delicate mechanism going on here than what one 
would naively expect from a "superexchange" process. 

Let us define the pseudo spin operators by S!,!~ = ~ , ~  , ijl = T.~ a ..... p,,.~b.,..~/2 
for j =  I, 2, and 3, where n ~j~ are the Pauli matrices (3.26). Again these 
operators are not Hermitian, but work in exactly the same way as the 
standard spin operators. Then the effective Hamiltonian is rewritten as 

Hen-= E o -  E U.,..>, ...... '~!,/'SI/' - Po 
x..1' e/1o j 1 
(X :# .v) 

[ E o -  ,~ .,.-Sa-2U~I,, { ( j ~  l~X'~(Jl'~(J)--x+l ) - ] } ]  Po (2.35) 

where we used the estimate (2.27) for 0 to get the final line. The right-hand 
side of (2.35) is nothing but the Hamiltonian of the nearest neighbor 
Heisenberg chain with the ferromagnetic interaction J,~r" 2U/23. We have 
successfully derived a ferromagnetic spin system starting from the Hubbard 
model for itinerant electrons. 

If we believe in this first-order perturbation theory, then we can con- 
clude from the "spin Hamiltonian" (2.35) that the ground states of the 
present Hubbard model are the ferromagnetic states given by 

~ T = (  I"[ a:'.t) C'[gvac (2.36) 
x" ~ Ao / 
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and its SU(2) rotations. Moreover, low-energy excitations of the Hubbard 
model should coincide with those of the ferromagnetic Heisenberg model 
(2.35). The elementary spin-wave excitation should then have the disper- 
sion relation 

Esw(k)- Eo= 2J~fr(sink) Z'.~4U (sink) (2.37) 

Note that this heuristic estimate exactly coincides with our rigorous result 
(2.13)! 

It should be stressed, however, that the above naive perturbation 
theory remains to be justified in many aspects. We have been neglecting 
many contributions without giving any estimates. The most important con- 
tribution that has been neglected comes from the second-order perturba- 
tion from the hopping terms or the effective hopping terms (as illustrated 
in Fig. 5 in Section 2.7). Since such a perturbation lowers the energy of 
electron pairs in a spin singlet, it weakens the tendency toward 
ferromagnetism. Fortunately, a rough estimate shows that this effect is 
small provided that [p[ t,~ U,~ 22t. 

We do not argue here that the validity of the present perturbation 
theory can be established. By comparing it with our rigorous results about 
the local stability of ferromagnetism and the spin-wave excitation, however, 
it seems rather likely that this treatment gives sensible conclusions about 
low-energy properties of our Hubbard model. In ref. 52 we further discuss 
the derivation of low-energy effective spin Hamiltonians in the Hubbard 
models. 

2.7. Ske tch  of the  Proof  

We will now illustrate how the theorems discussed in Section 2.1 are 
proved. The heart of the proof is to construct rather accurate trial states 
for the spin-wave excitations and carefully examine the action of the 
Hamiltonian or~ them. 

To begin with, we note that one of the "ferromagnetic ground states" 
(defined in Section 2.1 as the lowest energy states within the sector with 
S,ot = Sma ,) can be written as in (2.36). Note that (2.36) is nothing but the 
state obtained by "completely filling" the (single-electron) states in the 
lower band with up-spin electrons. The energy of ~T is given by E0 = 
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As a candidate for the spin-wave excitation, we shall consider the state 
in which a single down-spin propagates in ~T with a momentum k as 

12(k)=cr -I ~ elk"T,. (2.38) 
X E / Iv  

where we introduced 

F,. * b q5 r (2.39) = ax. j. x. 1 

The normalization e(k) will be determined later. 
Since the annihilation operator  b.,..r properly cancels out with the crea- 

tion operator a.*,.r, the state F,. is such that (one of) a.*,.T in (2.36) is 
replaced with a,..* 1' Recall that, as can be seen from the definition (2.23), 
the operator a~..~ creates an electron in the sharply localized state <p~"~. As 
the localization property (2.20) of r shows, two neighboring states q~("~ 
and ~o c'§ have very small overlap (of order 1/22). This means that the 
down-spin electron inserted in (2.38) costs very small energy due to the 
Coulomb repulsion U ~,.~ A n,..T n,. ~. At the same time it costs small kinetic 
energy since it only contains (single-electron) states from the lower band. 
These observations suggest that the (2(k) of (2.38) are good trial states for 
low-lying excitations in which both the kinetic energy and the Coulomb 
interaction are properly taken into account. See Fig. 3. 

To prove the upper bound for the spin-wave dispersion relation in 
(2.10), we employ the standard variational inequality [-see (9.1)] and 
calculate the expectation value of H in the state 12(k). We then find that the 
main contribution comes from the "exchange" Hamiltonian (2.35), which 
leads us to the desired upper bound. See Section 9 for details. 

To further investigate the accuracy of the trial state and to get the 
lower band in (2.10), we apply the Hamiltonian to s Although an 

X 
Fig. 3. A schematic picture of the state F~, (2.39), which appears in the definition of f2(k), 
(2.38). Since F~ is constructed by using sharply localized basis states for the lower band, it 
costs small Coulomb repulsion energy and small kinetic energy. In the state 12(k), the down 
spin propagates with momentum k and further reduces the total energy to -~E0+ (4U/24) 
{ sin(k/2) } 2. 
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enormous number of terms can appear, the major contributions "-s come 
from three basic short-range processes that we now describe. The three 
processes are represented by the following three operators (2.40)-(2.42), 
which are extracted from the Hamiltonian in the form (2.24). The first pro- 
cess is the nearest neighbor "exchange" discussed in Section 2.6, which is 
represented by 

. , -  t t H 1 =  ~ 0,-,-+1: ....... +l(a ..... a,.+t._~b,-+l._,b ..... 
A" ~ /It, 

~ ' =  T , I  

* * _~b.,.+l,_~b.,..,) + a x +  l,aa.x .. (2.40) 

The second process is the nearest neighbor hopping 24 represented by 

H~= 
X E ,I,, 
i"=__.1 
a = l . l  

{ 4  t t t 
U x  + , - . x  + r ; x +  ,..xax+,..aax+ ,..-abx + ,  -. _.b,.,a + Zx+,. .xax+, . .abx.a } 

(2.41) 

The third process is represented by 

Hs= Z ~J.,+,t/2,..,+~t/2,:-,..,+,a*.,.+,,/2,.~a*.,-+,,/2,.-~b.,-.-~b-,+L~ C2.42) 
N E Ao 

a = T , $  

which lets two electrons in neighboring A,, sites x, x +  1 hop simul- 
taneously to the site between them. Note that a.,.* + I 1/2~.~ creates an electron 
in the upper band. 

Let us investigate the action of these partial Hamiltonians (2.40)-(2.42) 
on the state g2(k). It is useful to first consider the action on the state F,, 
defined in (2.39) which contains a down-spin electron at site y. By operating 
the "exchange" Hamiltonian (2.40) on F.,,, we find 

H,r,,= o,._,.,,:,,_,.,.ir,,-r,._,)+ o.,..,,+,:,,.,,+,(r,,-r,,+,) 
= 0o., :o.~(2F,.-F,  ,-  , - K,,+,) (2.43) 

where the minus signs come from fermion ordering for the "exchanged" 
configurations. Figure 4 illustrates how these four terms arise. We also used 

23 In the la ter  sections,  we of course  cont ro l  all  the possible  cont r ibut ions .  

_,4 The first ope ra to r  annih i la tes  an  e lect ron at  x + r wi th  spin - a ,  and  then creates the same 

thing. Therefore  its ac t ion is the same as the second opera to r  a]+r.,,b.,..,~ provided  tha t  there 
is a spin ( - a )  e lectron at  x + r. 
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t t ~ t t  t ~ t  

t 1,,,,, Y 
t t ~ t t  t t ~  

Y Y 

t t 

Uy-l,y;y-l,y 

t t 

t t ~ t t  t t t ~ t  

Oy, y-kl;y,y=l-lt t ~fy)y-l-l;y)y-kl~ 
t t ) t t  t t ) t t  

2 Y 

Fig. 4. When the "exchange" Hamiltonian H~ acts on the state/~,., four terms are generated. 
Two of them are the same as /~,., while the electronic spins are exchanged in the other two 
states. The process illustrated here can be regarded as the ultimate origin of ferromagnetism 
in the present model. 

the translation invariance of  b', which is indeed essential for the present 
proof. Recalling (2.38), we get the expected result 

H,12(k)= {Eo +4Oo.,:O.l (sin ~)Z} g-2(k) (2.44) 

To see the role of  H 2, (2.41), let us operate with it on /~,. to get 

H2F ,  , =  Z {(~.~.+~.~.~+~.~:.+~.~.~+r.~.~)[~.)+r-(L~.~>~:~-r+r.`.`:~-~.)[~ ~,)} 
r =  + 1  

U~.,.:,.o+r,..o)(F>.+, T'!,I )) (2.45) 

where P(,.~)= a>+..~b . . . .  . rCr  is the state with an empty site y - r  and a doubly  
occupied site y. We also used the translation invariance of  U and r. In 
Fig. 5, we illustrate the action of  a part  of  H2 on 1".,.. Again from (2.38), we 
find that 

e - ikr __ 1 
Hz/2(k)  = ~ ~x(k) 

r = _ + l  

e -ikr- 1 
r=+l 

- -  ( C],..,.:,..o + rr.o) ~,,(k) 

- -  ( U'l. l: Lo + r i,o) ~,.(k) (2.46) 
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t t t t 

Uy, y ; y , y - 1 / t  ~ f y + l , y - F 1 ; y - { - l , Y / t  

t t + t t t t + t t 
Y y 

Fig. 5. When the (effective hopping) operator 5~.,.~,t.o=m O,.+L,.+l:.,+L,.a].+l.oa]+t._,, 
h~+ ~_,,b.,..o acts on /~,., two states with a bound pair of a hole and a doubly occupied site 
are generated. Note that the two resulting states are related through the translation by a dis- 
tance 1. This process is the major source of instability against antiferromagnetism. 

where we used the reflection symmet ry  25 to get the final line. Here  

F.,.(k) ~ eik.,.T-~,, ~" u,.,. * = .,. = e ax . ,b  ...... *r (2.47} 
X ~ Ao X ~ A o 

is the state in which a b o u n d  pa i r  of  an empty  site x - r  and  a doub ly  
occupied site x is p r o p a g a t i n g  with  m o m e n t u m  k. We shall  abbrev ia te  
Z_+~(k) as ~ •  

Similar ly  we ob ta in  

eik - 1 
H 3 ( 2 ( k ) =  ~-(~-) (Jt/z.~/2;o.lO(k) (2.48) 

where 

O ( k ) =  ~ ik.,-,t , (2.49) e ~,x+(i/21.1ax+(l/2}.lbx, Tbx+l.lG15 T 
X ~ Ao 

is the state in which two ad jacent  empty  sites in Ao and a doub ly  occupied  
site between them form a b o u n d  state and  p r o p a g a t i n g  with  m o m e n t u m  k. 
See Fig. 6 for schemat ic  pictures  of  the states 26 12(k), S + ( k ) ,  and  O(k) .  We 
also note  here tha t  these states all be long  to the Hi lber t  space ~ ,  which 
we in t roduced  jus t  above  T h e o r e m  2.4. 

The  re la t iqns  (2.46) and (2.48) clear ly show that  our  tr ial  s tate g-2(k) 
cannot  be the exact  e igenstate  of  the Hami l ton ian .  To invest igate the low- 
lying spec t rum of  H, we have to cons ider  (at  least)  the subspace  spanned  

25 Such a symmetry exists in the present model. In the general class of models studied later, 
we do not assume reflection or rotation symmetries. 

26 In the general notation used in the later sections, the states Zr(k) and O(k) are denoted as 
�9 o.,(k) and q~/2. i/,_,o.t(k), respectively. See Section 6.2. 

822/84/3-4-16 
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by the states t2(k), Z• and O(k). As before, we calculate the action of 
H on the latter states to find 

H~• ~ (Eo+ ~'o,o:o,o) 3 •  0r Uo, l;l, 1 + ro, l)(e ~ i k -  1) I2(k) 

+ (other states) (2.50) 

and 

H(9(k) ~- (Eo - 2ro, o + 2ru2. i/2 + Ou2, u2-i/2, u2) O(k) 

+ or Oo, r l/2,1/2f2(k) + (other states) (2.51) 

Although it might not be clear at this stage, it turns out that the "other 
states" in (2.50) and (2.51) do not play essential roles. We leave such 
estimates (as well as the precise definition of the "other states") to the latter 
sections, and simply neglect them here. 

Equations (2.44), (2.46), (2.48), (2.50), and (2.51) provide, for each 
k ~ iT, the representation of the Hamiltonian in the four-dimensional sub- 
space of J~  spanned by the states I2(k), S• and (9(k). We now read off 
the matrix elements -~7 from these equations and then use the estimates 
(2.26)-(2.30) of U" to evaluate them as 

h[ t2(k), t2(k) ] " Eo + 4~lo,~:o.~ (sin k)  2 

~ E o + 4 ~  sin~ (2.52) 

h[S_+(k), 3 •  _~ E o + Uo.o:o.o - Eo + U (2.53) 

h[O(k), O(k)] ~- Eo - 2ro.o + 2r 1/2.1/,_ + 01/2.1/2: u-,. u,- 

~ Eo + 222t + U (2.54) 

h[~•  f2(k) ] ~ ct(k)-i ( ~]1.1;1,o + r l.o)(e -+;k - 1 ) 

/'cUp U ) (e+i k "o~(k)-' ~--~-_+-f~+c'pt - - I )  (2.55) 

h[t-2(k), ~,• -~ 0r l:Ll +ro.))(e ~:ik- 1) 

~-e(k) - -~+c'pt (e ~-ik- l) (2.56) 

-'7As usual, matrix elements h[~,~] are defined by the unique expansion H~= 
~,eh[~, ~] ~. See also (6.2). 
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h[ O(k), tg(k)] -~ 0r [J,/z.l/2;o 1( eik - 1) 

~- o~(k) -1 ~ (e i* - 1) (2.57) 

and 

h[e(k) ,  O(k)]  ~ c~(k) gr o ,. -;k �9 .,/2.,n(e -- 1) 

"-~ e(k) ~ (e -ik - 1) (2.58) 

where the approximate values are obtained for 2>> 1 and 1p1/22,~ 1, and 
c, c' are constants. Reflecting the use of the nonorthonormal basis, these 
matrix elements are not symmetric. In particular, the drastic difference 
between the elements h [ ~ : ( k ) ,  f2(k)] of (2.55) and h [ t ? (k ) ,~+(k ) ]  of 
12.56) plays a fundamental role in our proof. Figure 6 shows these matrix 
elements. 

/~Eo +U Eo -t- 2.,k2f + g ~  

z+(k) k 

t t t ~ t  t 

a(k) U sin k ~ i  / _ _  

e(k) k 

t~ 
t t t t 

a ( k ) U  sink / / / f f  

1 cUIp I Isin / "/'I U sin 

a(k) k 

t t ~ t t 

Fig. 6. Schematic pictures of the states Q(k), -~+(k), and O(k) and the matrix elements 
between them. As for the off-diagonal matrix elements, we only present the main part of their 
absolute values. Note that the matrix elements between g?(k) and -=+(k) are highly asym- 
metric [apart from the artificial asymmetry factor ~(k)]. The small outgoing matrix elements 
from t?(k) indicate that the state O(k) is a good trial state for the spin-wave excitation. 
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In order to bound the excitation energy from below, we use the follow- 
ing well-known fact about the minimum eigenvalue of a matrix. Let 
(hi, j)i,j=l,..., u be an N x N  matrix with real eigenvalues. Then the lowest 
eigenvalue ho of the matrix satisfies h 0/> min;= 1,.... N D,. with D i = Re[hi,~] - 
Z j ~  Ihi.jl. This is almost trivial, but see Lemma 6.1 for a proof. We stress 
that this simple-minded inequality is expected to yield physically meaning- 
ful results only when one uses a basis which "almost diagonalizes" the low- 
energy part of the Hamiltonian. 

We now apply this inequality to the 4 • 4 matrix representation of H 
in each sector with a fixed k E gr The quantities corresponding to Dg are 
evaluated for each state as 

and 

D[g2(k)] = h[g2(k), .-Q(k)] - ~ ,  Ih[g2(k), S + ( k ) ] [ -  Ih[g2(k), O(k)]l 
+ 

>~Eo+~-g(sink)2-4o~(k)(~5+c' ,p]t)  sin k 

- 2~(k) ~ sin k 

D[-~+(k)]  = h [3+(k ) ,  ~+ (k ) ]  - Ih[Z+(k),  .C2(k)] I 

)sin  >~Eo+ U - 2 a ( k )  -~ + ~ + c '  Ipl t 

D[ O(k) ] = h[ O(k), O(k)] - Ih[ O(k), ~(k ) ]  ] 

>~Eo+222t+ U-2o~(k)-l ~5 - sin k 

where we used the estimates (2.52)-(2.58) to get the lower bounds. 
At this stage, we choose 2s the constant ~(k) as 

/ c  IP[ 1 

(2.59) 

(2.60) 

(2.61) 

2s The choice of ct(k) here is different from that in the full proof in Section 6. [See (6.31).] 
This is because the actual estimate of D[f f •  in the later sections takes into account 
various small terms which are simply neglected here. 

(2.62) 
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This choice makes  the bound  (2.60) into 

U 
D[Z:~(k )  ] >_- E o + ~- (2.63) 

and the bound  (2.61) into 

U [ c  [p] 1 c' ] p [ t , - '  
D[  O(k ) ]  >/Eo + 22-'t + U -  ~__ ~--~-_ + ~-~ + ~ )  

22U 
>~Eo+222t  + U - - -  

2 

>~ Eo + U (2.64) 

where we have further assumed 29 U<~4t. Finally we substi tute (2.62) into 
the bound  (2.59) to get 

4 U  [ . k'~ 2 
DE >i eo +-V- t,, s'n 

. / c l p ,  1 c ' , p l t , / 6 U  _ ,  , , / s i n k ,  -" +--6-)t V+, c - 4 ~ - - ~ - _  + V [Pl )t 
4 U {  ( 1 c' - 

{I_A,,,,, }( 4U.=7 A2 A312t [Pl sin (2.65) 
>~E~  /L" 2 U 

with constants  3~ A~. A2, and A 3. Since the lower bounds  (2.60) and (2.61) 
lbr D[Z_+(k)]  and D[O(k)] are strictly larger than that  for D[g-2(k)]. we 
find that  the r ight -hand side of  (2.65) gives the desired lower bound  for the 
lowest eigenvalue of the Hami l ton ian  in the space Y~. Therefore  the lower 
bound for the spin-wave excitation in (2.10) (which is the main  s ta tement  
of Theorem 2.4) has been derived. 

-'~ The upper bound required for U depends sensitively on the choice of~z(k). The requirement 
U ~< K22t made in Theorem 2.4 (and which appears in the full proof) is somewhat different 
from the present one. 

3u Here the term A2/2 in the right-hand side of (2.65) can be replaced with A2/2"- if we simply 
equate the above expression. Since the actual matrix elements have many "small" terms that 
are neglected here. what we can prove (in the later sections with perfect rigor) is the bound 
in terms of the quantity in the right-hand side of (2.65). 
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In the remainder, we sketch how we get Theorem 2.3 about the local 
stability of ferromagnetism from the above lower bounds. The lower 
bounds in (2.10) gives strict bounds Esw(k )>E0  for all k e , J l  except for 
k = 0. This means that the desired local stability inequality (2.9) has been 
proved except in the translation-invariant sector with k- -0 .  To deal with 
the k = 0 sector is easy once we realize that /2(0)  is nothing but an SU(2) 
rotation of the "ferromagnetic ground state" q~t' By simply repeating the 
above arguments for the three-dimensional subspace spanned by 2+(0)  
and O(0), we easily find that the desired bound (2.9) also holds in the 
sector with k = 0. It only remains to extend the parameter region in which 
the statement is valid. This is easily done by a general consideration about 
the monotonicity of energies as a function of U. See Section 6.4. 

3. DEF IN IT IONS A N D  M A I N  RESULTS 

In the present section, we define the general class of models treated in 
the present paper and precisely state our main theorems. 

3.1. Latt ice 

We describe the lattice on which our Hubbard model is defined. The 
lattice is characterized by the dimension of the lattice d - - I ,  2, 3 ..... the 
dimension of "cells" v = 1, 2 ..... d, and the linear size L, which is taken to 
be an odd integer. Throughout  the present paper we assume that the three 
parameters d, v, and L are fixed to allowed values. All the bounds proved 
in the present paper are independent of the system size L. 

Let Ao be the d-dimensional L x ... x L hypercubic lattice with 
periodic boundary conditions, 

Ao={x=(x, ..... x,,)lx, e z ,  I x i l < . ( L - 1 ) / 2 f o r i = l  ..... d} (3.1) 

We "decorate" the lattice A o by adding sites taken at the center of each 
v-dimensional cell. Let ~ be the set of vectors defined as 

{ } ql'= u=(u,  ..... ua)lui=Oorl/2, and2 ~ ui=v (3.2) 
i = 1  

Note that each u s ~ has the length lul = x/~/2. For each u ~ q(', we let 

A,,= {x +u[xeAo}  (3.3) 
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By introducing the unit  cell q / o f  the lattice by 

~l = {o} w o?[, (3.4) 

where o = (0,..., 0), our  decorated hypercubic  lattice is defined as 

A = 0 A,, (3.5) 
I l E a l  

We often decompose  A as A = Ao w A', where 

A ' =  U A,, (3.6) 
I t  E '~ / '  

As is discussed in Section 2.1, we can imagine that  sites in Ao represent  
metallic a toms  and sites in A'  represent  oxygen atoms.  The  numbers  of  
sites (vectors)  in the unit  cell 3~ 

b=[qll=(vd)+l (3.7) 

is impor tan t ,  since it gives the number  of  the bands  in the cor responding  
single-electron problem.  

Fo r  d =  I, the only possible choice of  v is v = 1, and we get the chain 
with two kinds of  a toms  discussed in Section 2 (see Fig. 1). Fo r  d = 2, we 
can either set v = 1 to get the lattice in Fig. 7a with the band  n u m b e r  b = 3, 
or set v = 2 to get the lattice in Fig. 7b with b = 2. Fo r  d = 3, there are three 
choices for v. The  lattices with v = 2 and v = 3 have the structures similar 
to the fcc and the bcc lattices, respectively. 

We introduce some sets of  lattice vectors  which will become  useful. We 
define 

{ ,' } ~o = f=(f~,...,fa)[fi=Oor + I / 2 ,  a n d 2  y '  I / i l - - -v  (3.8) 
i = l  

which is the collection of  the sites in A' adjacent  to the origin o. We have 
I.~,,I = 2"('~). F o r f e  ~o, we define 

o~r= { g e ~ o l  Igil = Jf~[ for i =  1 ..... d} (3.9) 

Note  that  for a fixed f e  o~ o, { f + g I g e ~r} is the set of  sites in Ao which 
are adjacent  to f We have Io~r I = 2". We also note that  for g e ~ r ,  we have 

~ g = ~  (3.10) 

3~ Throughout the present paper, ISI denotes the number of elements in a set S. 
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b) 

Fig. 7. The lattice A in two dimensions ( d = 2 )  with (a) v=  1 and (b) v=2 .  The black dots 
are sites in A,, and the gray dots are sites in A'. One may interpret black sites as metallic 
atoms and gray sites as oxygen atoms. 
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3.2. Hubbard Model  

We define the Hubbard  model on the decorated hypercubic lattice A. 
As usual, we denote by c.t,.~ and c,.~ the creation and the annihilation 
operators, respectively, of an electron at site x e A with spin a = T, ~. These 
operators satisfy the standard anticommutat ion relations 

= c , . . , }  = 0  C.,.,o t {C ...... C),.r} t (3.11) 

and 

, t  - , .  , {c ...... ~,,,} = 6 , . , & ,  (3.12) 

for any x, y e A  and a , r = T , , L ,  where { A , B } = A B + B A .  The number 
operator for an electron at site x with spin cr is defined as 

t , n ..... = c  ..... c.,.., (3.13) 

We consider the standard Hubbard  Hamiltonian 

H = Hho p + Hin t (3.14) 

The interaction Hamiltonian is 

Hint = U ~" n.,.,)n.,..l (3 .15)  
A" E ./1 

where U > 0  is the on-site Coulomb repulsion energy. The hopping 
Hamiltonian is further decomposed as 

(0) t 
Hho p = H h o  p Jr- p H h o  p (3.16) 

where H ~~ is the hopping Hamiltonian of the flat-band model defined as h o p  

. , 0 , _ _ ,  ,,o. 
o ' =  .,[ . v E M '  y E z |  o ; ' E / l ,  

].x - - y ]  = x / ~ / 2  I.x --.v] = x / ' ~ / 2  

where t > 0 and 2 > 0 are parameters. It is, of course, possible to represent 
the Hamiltonian in the "standard" form as 

H(Ol (3.18) hop Z ,,0, o , o  - x ,  y U x , ~ r C T ,  o. 

, r =  L,L x ,  y E A  
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where the hopping matrix elements are given by 

( 0 )  _ _  ( 0 )  
t x .  y - t , ,  .,. = 

,~2t if x = y ~ A '  

2t if x ~ Ao, y e A' with l x -  yl = x/~/2 

2(,,-,,) ( d - / t ~  t if x, y e A o w i t h L x - y l = v / ~  (3.19) 
kV -- l t /  

where/t  = 0, 1 ..... v 

0 otherwise 

The representation (3.17) shows that the hopping Hamiltonian r4(0) is ~ h o p  

characterized by mean-field-like hoppings within each v-dimensional cell 
which consists of x E A' and the sites y ~ Ao adjacent to it. This rather artifi- 
cial choice of the hopping produces the single-electron spectrum with a 
completely flat band. See Section 4.1. 

The perturbation Hamiltonian, on the other hand, is rather arbitrary. 
The magnitude of the perturbation is controlled by the real parameter  p. 
The Hamiltonian H'ho p has the standard form 

Hhop= Z 2 ' + ' t ....... c,,_.#c ..... (3.20) 
a= T,I x , y ~ A  

The hopping matrix elements tl,..>.=ti,,.,.~R are arbitrary except for the 
following conditions. We require the translation invariance 

t',. >.= ' (3.21) [ x + z , y + z  

for any z ~ Z a and any x, y ~ A, and the summability 

Itl,., ,, I ~<t (3.22) 
y ~ , ' l  

Y, I x - y l .  It" ,,I <~tR (3.23) 
)'CA 

for any x ~ A. Here t is the same as before, and R is a constant which 
measures the range of the hopping {t.',_>,}. When R chosen to optimize 
(3.23) is less than v/v/2, we redefine it 32 as R=x/~/2 .  

The Hilbert space of the model is spanned by the basis states 

~ A,a = .f'[ c""r. -:~a]--[ c:.~. @var (3.24) 

32 This is done for a purely technical reason to make some formulas simple. See (10.90). 
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where A, B are subsets of A, and q~ar is the unique vacuum state charac- 
terized by c , . . ~ , ~  = 0 for any .x" e A and a = T, ~.. In the present work, we 
only consider the Hilbert space 5r ~ with the electron number fixed to 
L a= [Ao[, which is spanned by the basis states (3.24) with IAI + IBI = L  a. 

3.3. Local Stability Theorem 

The total spin operator of the Hubbard model is defined as usual by 

C ~. cr~lJ Itr,  r C x  r t o t  . . . .  

x ~ A  tr, r =  T , , [  

for ~ = 1, 2, 3, where p ~  are the Pauli matrices 

P " ' = ( 0 1  : ) ,  P'2'=(O i o i ) ,  

An explicit calculation shows that the 

(3.25) 

~ 
spin operators (Stot)  2 =  

~ x =  1.2.3 X~tot,['~'(~)~2, ~tot"~C3~ and the Hamiltonian H commute with each other. 
This means that we can find simultaneous eigenstates of these operators. 
The eigenvalue of (S,o,) 2 is denoted as S,o,(S,o,+ 1), where S,ot can take 
values 1/2, 3/2 ..... Smax with S .. . .  = La/2. 

We are now able to state the theorem due to Tasaki 147~ and Mielke 
and Tasaki. 134~ 

T h e o r e m  3.1 (Flat-band ferromagnetism). Consider the Hubbard 
model with the Hamiltonian (3.14). Assume t > 0 ,  2 > 0 ,  and p = 0  to get 
a model with a flat band. Then, for any U > 0 ,  the ground states of the 
Hamiltonian H have Sto, = Smax and are nondegenerate apart from the 
trivial (2S .. . .  + 1)-fold spin degeneracy. 

This theorem is desirable in the sense that it completely determines the 
ground states of the model. But the result is not robust, since it applies 
only to the models with a completely flat band. Since refs. 47 and 34 only 
discuss the models with v = 1, we will prove the theorem in Section 5.4. 

We now describe the new robust results for the models with a nearly 
flat band. For  S,o,= 1/2, 3/2 ..... S . . . .  we denote by Emin(Stot) the lowest 
eigenvalue of the Hamiltonian (3.14) in the sector which consists of the 
states q~ such that (Stot) 2 ~/' = Stot(Stot + 1 ) q~. Then we have the following 
simple lemma for the sector with Sto t = area x. 

Lemma 3.2 ("Ferromagnetic ground states"). Assume that t > 0 ,  
2>-21, and IPl 2 - 2 ~  < r t ,  where 21 and r I are finite constants which depend 
only on the dimensions d and v. (See Lemma 4.1 for explicit formulas of 21 
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and r~.) Then for arbitrary U, the states q~ such that (Stot)2qs= 
Smax(Sma.~+ 1 ) ~  and H~=Emin(S . . . .  ) ~  are nondegenerate apart from 
the trivial ( 2 S m a  x -k- 1 )-fold spin degeneracy. 

This lemma is almost trivial, but will be proved in Section 5.3. For 
convenience, we call the state r characterized by the above lemma the 
"ferromagnetic ground states." These states are the energy minimizers in 
the sector with Sto t ~--S . . . .  and are not necessarily the true ground states. 
We shall remind the reader of this abuse of terminology by always putting 
the "ferromagnetic ground states" within quotation marks. 

The first theorem establishes the #Tstability of the "ferromagnetic 
ground states" against a single-spin flip. Let s denote the bandwidth of the 
lowest band. (See Section 4.1.) For p :~ 0 and a generic choice of { tl,.._,.}, the 
bandwidth g is strictly positive. 

Theorem 3.3 (Instability of the "ferromagnetic ground states"). 
Assume the conditions for Lemma 3.2. We also assume that g>  0 (which is 
generically true if p :/: 0) and 

0<~ U < g  (3.27) 

Then the "ferromagnetic ground states" are unstable under a single-spin 
flip in the sense that 

E m i n ( S m a  x - 1 ) < E m i n ( S m a x )  (3.28) 

The theorem will be proved in Section 5.3. 
Theorem 3.3 shows that one can lower the energy by flipping a single 

spin in the "ferromagnetic ground states." It only shows that the 
"ferromagnetic ground states" are not the true ground states. To identify 
the true ground states (for U~: 0) in this situation is a highly nontrivial and 
interesting question. 

To show the instability of a certain state (as in the above theorem) is 
not a hard task since one can rely on the standard variational argument. 
A really important (and difficult) part of the present work is to show the 
following theorem, which states the stability. 

Theorem 3.4 (Local stability of the "ferromagnetic ground states"). 
Consider the Hubbard model with the Hamiltonian (3.14). Assume that the 
parameters satisfy 

2~>22, lpl ~<p,, ), lpl ~<p, (3.29) 
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and 

U>>" K1 )'2t IPl (3.30) 

where 22, Pl,  P~, and KI are positive constants which depend only on the 
basic parameters d, v, and R. Then the "ferromagnetic ground states" are 
stable under a single-spin flip in the sense that 

Emin(Smax - 1 ) > Emin(Smax) (3.31) 

We stress that the problem of stability against a single-spin flip is 
already a highly nontrivial many-body problem. The restriction to the 
sector with Stot = Sm~x- 1 does not reduce the problem to that of a single- 
particle (such as a magnon), since there are plenty of spaces for the 
electrons to move around. Moreover there is no way of expressing the 
eigenstates as Slater determinant states since there are both up-spin and 
down-spin electrons interacting via local Coulomb repulsion. See also the 
discussion after Theorem 2.3. 

3.4. Bounds for the Spin-Wave Excitation Energy 

Finally we describe our results about the elementary spin-wave excita- 
tion. The lower bound for the spin-wave energy in Theorem 3.6 is closely 
related to the above local stability theorem. 

For x � 9  Z d, we let T,. denote the translation operator acting on the 
Hilbert space J f  as 

where A and B are arbitrary (ordered) subsets of A as in (3.24). Let us 
define the space of wavenumber vectors by 

:/f  = { k = (kl ..... k d) I ki = 2rmi/L with ni �9 Z 

such that In~l ~< (L - 1)/2} (3.33) 

For each k �9 ~ we denote by ~ the Hilbert space of the states with the 
crystal momentum k and with L d -  1 up-spin electrons and one down-spin 
electron. More precisely, we set 

~ = { ~ � 9  #gl  T,.[ r  =e -~k - "~  for any x e Zd 

and .~;~31~ = (Smax- 1) ~} (3.34) tot 
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We can now define the energy Esw(k) of the elementary spin-wave 
excitation with the wave number k e ,)ff as the lowest energy among the 
states in Jgk. Then we have the following two theorems. 

Theorem 3.5 (Upper bound for the spin-wave energy). Assume 
that 2/>2o and IP[ ~<Po, where 2o and Po are positive constants which 
depend only on d, v, and R. Then we have 

Esw(k) - -  Emin(S . . . .  ) <~ F I -~ G(k) (3.35) 

where 

G ( k ) = 2  ~] ~ ( s i n k ' ( f  +g) . )  2 
f E.~,, g E ..~f 

The prefactor F~ can be written as 

A_~ A62~.t [p[2 
F 1 = 1 + + A s 2  [P[ + U 

(3.36) 

(3.37) 

with the constants A; ( i=4 ,  5, 6), which depend only on d, v, and R. 

Like Theorem 3.3 about the instability of the "ferromagnetic ground 
states," the above theorem is proved by the standard variational argument. 
See Section 9. 

The major achievement in the present paper is the lower bound which 
corresponds to the above (3.35). 

T h e o r e m  3.6 (Lower bound for the spin-wave energy). Assume 
that 2>/23, [p[ ~<Po, and K22t>~ U>>-As22t [p[, where 23, Po, K2, and A 3 
are positive constants which depend only on d, v, and R. Then we have 

Esw(k)-Emin(S .... )~F2-~G(k) (3.38) 

with G(k) defined in (3.36). The prefactor F,_ can be written as 

Fz= 1 - A ,  IPI-A2 A3),'-t [Pl (3.39) 
2 U 

with the constants A j, A2, and A3, which depend only on d, v, and R. 
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Note that (3.37) and (3.39) imply that F~ = F2 - 1 when 2 is large and 
IPl is (very) small. In this case the dispersion relation Esw(k) of the 
elementary spin-wave excitation is given by 

Esw(k)-Emin(gmax) =-~G(k) (3.40) 

This dispersion relation is exactly what one expects in the ferromagnetic 
Heisenberg quantum spin system defined on the hypercubic lattice .4 o with 
the exchange interaction Jen-= 2U2 -4 

As stressed in Section 2.1, Theorem 3.6 requires an upper bound for 
the Coulomb interaction U. By noting that Esw(k) is increasing in U, 
however, it is easy to prove nontrivial lower bounds for Esw(k) for larger 
values of U. 

Corollary 3.7. Assume that 21>23, [PI~Po, A321pI/K2~l, and 
U>~ K,_2t. Then we have 

Esw(k) - Emi,(Sm,x) ~> F3 G(k) (3.41) 

with G(k) defined in (3.36). The prefactor F3 can be written as 

F 3 = ( I - A ,  Ipl A,_), A32[pl_'~KZtK,_ j )3 (3.42) 

Proof. The first three conditions assumed here guarantee that we can 
use Theorem 3.6 when U=K22t. We claim that, for each k e ~  r, Esw(k) is 
an increasing function of U. This is because both H and H~nt commute with 
T,. and .~(3) and Esw(k) is defined to be the lowest energy in the sector 

�9 ~ t o t  ) 

with the fixed momentum k and the fixed eigenvalue of x '(3) Then it is 
t o t  ' 

trivial that Esw(k) for U>~K22t satisfies the desired bound (3.41), 
where the right-hand side of (3.41) is obtained by substituting U=K22t 
into (3.38). II 

4. S I N G L E - E L E C T R O N  P R O B L E M  

We shall investigate the properties of the single-electron system corre- 
sponding to our Hubbard model. A careful study of single-electron proper- 
ties is indispensable when we work with interacting many-electron systems. 
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4.1. Band Structure of the Model 

If there is only a single electron with, say, up spin in the whole system, 
a general state can be written as 

,/,(~o) = ~ * (4.1) ~.,- C x. t ~vac 
.x'~A 

with qL,-e C. As in the standard quantum mechanics, we regard the collec- 
tion q~=(qL,-).,-EA as a vector in a IAI-dimensional complex linear space 
YC'~ing~e _-----C IAI, which we call the single-electron Hilbert space. 

Since it obviously holds that Hi, t~(~P)=0,  the Schr6dinger equation 
H~(q~ ) = eqS(q~) reduces to 

t_,. ,. <p,. = e~p.,. (4.2) 
y e a  

where t =t~~ +ptl,. ,., and we denote the (single-electron) energy eigen- -A'.y - x  I '  

value as e. 
By rewriting the expression (3.17) for Hho p as 

( )( ) Hhop =I E E E "~'C~'.a'k" E C.,.+f.~ 2C,..r )-" C.,.+f.~ (4.3) 
cs= T,.I. u~41' x E A ,  . fee , ,  . re. .  ~', 

we can write down (4.2) in a concrete form as 

e~o,.=t ~'. (2qL,.+f+ ~ cP_,.+d+g)+P ~ tl,.,.qT.,, 
.re dr,, g E .~/ y E 4 

(4.4) 

and 

e<p.,.+,=22tqL,.+,,+2t ~ ~o, .+,+f+p ~ tl,-+,,;.qh, (4.5) 
.f~ .~', y E A 

where x e Ao and u e q/'. We recall that q/ is the unit cell of the lattice, 
and 33 q/' = q/ \{o}.  

Since the hopping matrix elements t~,. ,, are invariant under the transla- 
tion by any integer vector z ~ Z a, we can use the Bloch theorem to write an 
eigenstate of (4.2) as 

<p.~. = eik. Xv.,_(k } 

ss For  any  sets d and  B, A \ B  denotes  the set { x ~ d  [ x C B } .  

(4.6) 
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with ke:Z5 [see (3.33)], and vx(k) satisfying 

v x ( k  ) = V x + y ( k  ) (4.7) 

for any y s  Z d. With the translation invariance (4.7) in mind, we can iden- 
tify, for each fixed k e c/f, the function v.,.(k) (of x) with a b-dimensional 
vector 3a 

v ( k ) = ( v , , ( k ) ) , , ~ e l e C  b (4.8) 

where b = I~bl = if,) + 1 will turn out to be the number of the bands in the 
Schr6dinger equation (4.2). 

By substituting the representation (4.6) into the Schr6dinger equation 
(4.4), (4.5), we find the equation (the Schr6dinger equation in k-space) 

ev(k) = (2"-t M(k) + pt O(k) )  v(k) (4.9) 

which determines, for each k~,Z{5, the eigenvalue e of the original 
Schr6dinger equation (4.2). Here M(k)=(M, , . , , , ( k ) ) , , . , , ,~  I and O ( k ) =  
(Q,,., , ,(k)),, . , , ,~ are b x b matrices. 35 They are defined by 

(A(k)/2"- 

M,,.,,, (k)  = M , , , ( k )  = ""~,,(k)/2 

if u = u ' = o  

if u e q/' and u' = o 

if u,u '  e q l '  a n d u ~ u '  

if u = u '  e q l  

(4.10) 

and 

= l  E - '  .... , Q,,.,,.(k) t.,'~A,; t .... e (4.11) 

Here we have introduced 

Cf (k )=  y '  e i~'g (4.12) 

for f E f , ,  and 

A(k)= E E eik"f+g'= E (C,,(k))'- 
f r dF o g E ,~f u ~ atZ ' 

(4.13) 

34 In the present paper, boldface symbols are reserved to indicate 
b-dimensional vector space introduced here. 

35 Sans serif symbols denote matrices in the b-dimensional vector space. 

elements of the 

822/84/3-4-17 
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Since the matrix (~2/M(k)+ ptO(k)) is Hermitian,  it generically has b 
eigenvalues and eigenstates for each k e ~e-. We denote these eigenvalues as 
ej(k), where the band  index j =  1, 2 ..... b is assigned so that  ej(k)<~ ej+ l(k). 
When viewed as a function of  k, the eigenvalues ej(k) are usually called the 
dispersion relations of  the j t h  band. 

When p = 0, the eigenvalue problem (4.9) can be solved easily, and we 
obtain the dispersion relations 

I 0 for j = 1 

ej(k)= 22t for j = 2  ..... b - 1  

{22t + tA(k) for j =  b 

(4.14) 

Note  that  the model  has a rather singular band structure where most  of  the 
bands have constant  energies (i.e., are flat), and all the bands  with 
j = 2  ..... b - 1  are completely degenerate. Another  impor tan t  feature of  
(4.14) is that  the lowest band  ( j =  1) is separated from the higher bands by 
an energy gap 22t. See Fig. 2a for the dispersion relation in d = 1. We have 
also drawn the dispersion relation of  the fiat-band model  with d =  2 and 
v = 1 in Fig. 8. 

-71  

lOt  

k l  

0 7r 

mT1- k2 

Fig. 8. The dispersion relation for the three-band model with d = 2, v = 1. We have set t > 0, 
2 = 2, and p = 0 to get a fiat-band model. There are two fiat bands and one cosine band. 
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For p :/: 0, with a generic choice of H~op,  the dispersion relations ej(k) 
become k dependent and the bands are no longer flat. See Fig. 2b for the 
dispersion relation with slightly perturbed model in d =  l, and Fig. 9 for 
that in d = 2. The degeneracy between the bands with j = 2,..., b - 1 is also 
likely to be lifted (unless the perturbation has a certain symmetry). Actual 
band structures depend delicately on the choice of the perturbation, and 
are not easy to calculate. It generically holds, however, that the lowest 
band is still separated from the rest of the bands by an energy gap, 
provided that [Pl is not too large. We present the following crude estimate, 
which is sufficient for our purpose. 

Lemma 4.1. Assume that 2~>21=2"(b--1) '/2 and [ p l A - 2 ~ r l =  
9 x 10-3/b. Then we have 

e,(k) ~< 22t/4 (4.15) 

lOt 

i 

Fig. 9. The dispersion relation for the three-band model with d =  2, v = 1. The perturbation 
is given by tl,...,.---t if xe,~0.t/2~, ti~,.,.=-t if xe~,~l/2.ol, ti~.y=t'j,..,.=t if xe.~o and 
y = x + ( l ,  1), and t~,y=0 otherwise. We have set t > 0 ,  2=2 ,  and p =0.7. Note that the two 
lower bands become dispersive, and a gap appears between the second and the third bands, 
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and 

for j =  2, 3 ..... b. 

Tasaki 

ej(k) >>. 322t/4 (4.16) 

Proof. The statement is almost trivial, but we give a proof for 
completeness. Since the eigenvalues of 2-'tM(k) are either =0 or >~22t, we 
have 

22tM(k) 22/'~2 (4.17) 

Consider the similar quantity for the perturbed matrix, and note that 

[ { 22t [Vl(k)+ ptO(k)} __~]2 

=(2t2tM(k)-~)E+p2t2(O(k)) 2 

22t 
+ ( ; t M ( k ) - - T ) p t O ( k ) + p t O ( k )  / "(2-tM(k)-Y);-t~ 

["~'2t"X2 p" t" ( 
>~-}-)  - - - I l O ( k ) l l 2 - 2 l p l t l l Q ( k ) l l  22t l lM(k)l l+-~)  (4.18) 

By substituting the assumed bound for [p[ and the bounds 

IlO(k)ll ~ b, IIM(k)ll~l+lA(k)lA-2~l+(b-1)4"2-2~2 
we observe that the right-hand side of (4.18) is not less than (22t/4) 2. This 
means that the Schr6dinger equation (4.9) cannot have eigenvalues in the 
range 22t/4<~e <~ (3/4)~.2t. Since the eigenvalue ej(k) with j and k fixed is 
continuous in p, the statement of the lemma follows. | 

From now on, we assume that the condition for Lemma 4.1 is satisfied. 
The existence of a gap allows us to treat the lowest band in a special man- 
ner. Let us decompose the single-electron Hilbert space as 

~single = ~ 1 1 }  (~  ~/tO tsingle r single (4.19) 

where ~ t l )  is the Hilbert space corresponding to the lowest band (with ~ single 
the band index j =  1). It is spanned by the eigenstates of (4.2) with the 
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eigenvalue el(k) for k e dr. The space ~'single is the orthogonal complement 
of our ~) The dimensions of the spaces ,o single single" ~a'(1) and ~f"~ingle are La= IAol 
and ( b - 1 ) L a =  IA'I, respectively. 

~o,(~) and Let XsingleD(l) be the orthogonal projection onto the space ~,o s~ngle, 
denote by T the hopping operator on dt~ingme, whose matrix representation 
is given by (tx, y)x,yr We define the modified hopping operator T by 

~ ,  (I) 3 2 p i l l  TPsingle + g2 t( 1 -- --single' (4.20) 

and denote by (7,. y).,. y~,~ the matrix representation of T. Note that the 
bound (4.16) implies the operator inequality T>~ T. Define the modified 
hopping Hamiltonian by 

Hhop = ~ Z " * (4.21) t x  vCx, crCy # 
cr~ T.J. x, y e A  

which also satisfies 

H h o p  ~ / - t h o p  (4.22) 

Although the introduction of/-)hop is not essential for our proof, it con- 
siderably simplifies the required estimates. 

4.2. Local ized Bases 

We introduce bases for the single-electron spaces ~"~(l)sing e and ~'~tsingle , 

in which each basis state is localized at a lattice site. The use of such 
localized bases enables us to treat electrons as "particles," but with taking 
into account the band structure of the model. The actual construction of 
the bases will be presented in Section 10. 

We start from the easy case with p = 0, i.e., the flat-band models. For 
xEAo, we define the state ~b(") = (~/~;x'})yEA e ~single by 

10 if x = y  
~(")= 1/2 if yEA'  and [ x - y l  =v/~/2  (4.23) r y  

otherwise 

An explicit calculation shows that Y'.yEA -xgO),Tv)/l(")--_--0 for x e A o. This can be 
done by using (3.19), but it is easier to use (3.17). This means that 
if(-,-) = ~a,(~) since the lowest band has a constant energy e = 0 when p = 0 ~ single, 
as in (4.14). Since the states r with x e A o  are linearly independent and 

(1) IAo I is equal to the dimension of ~sin-le, we find that the collection of the 
(~) forms ' (i~ states { ~b" } x~Ao a basis of ovfsingle. 
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For x e A', we similarly define r e ~'~ingle as 

f !  if x = y  
Ib c") = /2 if YeAo r y  

otherwise 

and I x - y l  =v@2 (4.24) 

It is evident that ~1") with x ~ A' and ~b I'') with x'~ Ao are orthogonal to 
each other. This means that ~,c,.) with any x e A' is orthogonal to the space 
~ , 1  By counting the dimension, it then follows that {~blx)}x~A, form a s i n g l e "  

basis of Jf'si,Oe" 
Both the bases {r ~ and {~,c~}x~A, are not orthonormal, but 

the states in the bases are sharply localized at lattice sites. The introduction 
and use of the localized basis for . ~ ] )  ~i,Oe was essential in the study of the 
flat-band Hubbard models in refs. 47 and 34. 

To deal with non-flat-band models, we shall construct similar bases for 
the models with p ~ 0. Since this is a problem of perturbation theory in a 
one-body quantum mechanics, there is no essential difficulty when the 
strength of the perturbation [p[t is sufficiently smaller than the energy gap 
22t. In Section 10, we prove the following. 

I . e m m a  4.2. Suppose that 2 ~> 20 and [p[ 2---.~ r o, where 2o and r o 
are positive constants which depend only on the dimensions d, v. Then we 
can take for each x EA a state cp ( ' ) -  c,-) ., -(CPv )~,~Ae~i,gte such that 
cp~,:") = cp~,;++__ :) holds for any z ~ Z  a. The collections of the states {cp'-"'} ~'~Ao 

" I x )  . ( I )  t and { q~ ~ }~,.~ A, form bases of Jt~ and ~/t~ respectively. These [~asis 
states are summable as 

y '  -ix) I.,-I Ipl (4.25) 

Ix-y[.  Icp~;") - r <~ B, R ];4 (4.26) 
y ~ A 

Ipl 
Z IcP~)-~k~;"'[ ~<B~ ~-_ (4.27) 

x ~ A  

and 

Ix-3,[  I~0~; ") ~) Ipl . -~Oy [<~B,R--~ (4.28) 
. x ' ~ A  

where B 1 is a positive constant which depends only on d and v. 
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The bounds (4.25)-(4.28) imply that each state qCX) is sharply 
localized at the reference site x. The bounds also show that the states ~0 c') 
are chosen so that they become identical to Otx~ when p = 0. 

Let us investigate how the modified hopping operator T =  ( ' t x ,  y ) x , y ~ A  

introduced in (4.20) acts on these basis states. From the definition (4.20), 
it is obvious that 

~qr = �88 ' '  

if x �9 A'. For  x �9 Ao, the basis state is transformed as 

(4.29) 

T~0C")= ~' Zy..,_~to ly~ (4.30) 
)' ~ Ao 

where the effective hopping matrix elements ry.,,. are given by 

ry,,,. = ( 270 -d r  dk eik~Y-")el(k ) (4.31) 

where e~(k) is the dispersion relation of the lowest band discussed in 
Section 4.1, and ~ dk (-. .)  is a shorthand for the sum (2g/L)dy' ,k~r (...). 
Note that only y in Ao appears in the right-hand side of (4.30), reflecting 
the band structure. 

The precise form of Zy,x depends on specific perturbation. But the 
following general bound is sufficient for our purpose. 

Lemma 4.3. When )t >~ 2 0 and [p[ 2-2~< r o, we have 

Ivy.xl = ~ IL,.,,-I <~B~ Iplt (4.32) 
X ~ .d o )' E A o 

and 

Ix-yl.  I~,,..,-I = ~ Ix-yl. Ivy.xl ~B,N Iplt (4.33) 
x E A o  y ~ A o  

Since the bases {~o~Xl}_,.~.~. and {~ol"l}x~A, are not orthonormal, it is 
convenient to introduce the bases which are dual to them. The dual bases 
are constructed uniquely by a standard procedure (in Section 10), and we 
can prove the following. 

Lemma 4.4. Suppose that 2>/2o and [p] 2-2~<ro . Then we can 
(x) (x) (x) ( x + )  take for each x e A a state ~ " = (~;~-)y~A e ~single such that (~y = ~;~2_.-" 

holds for any z �9 Z d. The collections of the states { ~tx,} x ~ ao and { (~,x,} x ~ a' 
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form bases of H~s~_.~ and ~ t s i n g l e  , respectively. They are dual of the bases 
{Cp'')},,.~A ~ and {r in the sense that we have 

~(") * -(" ')=b,.  ,., (4.34) (%,) % . . . .  
y E A  

for any x, x' E A, and 

)-" (~:"))* m (') =,~ (4.35) "r y '  --y, y '  
.x'~A 

for any y, y'  e A. These basis states are summable as 

y. -r Ip [ .  B_, lop>; -~O~;")l ~B,-~5--)--~_, (4.36) 
y ~ A  

Ix-yl -(") ,lJ(")l IP l .  B2 I ~O >: - -  T y , <~ BI R --~ +--~_ 
.vra A 

(4.37) 

y, -(.,.) (.,.) lpl . B, I~o,,. -ft . , ,  [~<B, --~-+-~-_,- (4.38) 
x~iA 

and 

Ipl .  B2 
E I x - y l  I~:"-~,~:"l <~B,R-~-_+~_ 

x E A  

(4.39) 

where B2 is a positive constant which depends only on d and v. 

Note that the right-hand sides of (4.36)-(4.39) do not vanish when 
p = 0. This is because the dual basis state ~ " )  has nonvanishing exponen- 
tially decaying tail even in the fiat-band model. This remarkable asymmetry 
between the state ~0 ('~ and its dual ck (X~ plays a fundamental role in our 
work. 

5. LOCALIZED BASIS FOR THE HUBBARD MODEL 

In the present section, we discuss the framework for describing many- 
electron systems by using the localized basis introduced in Section 4.2. 
Elementary statements about the "ferromagnetic ground states" and the 
theorem for flat-band ferromagnetism are also proved. 
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5.1. Fermion Operators for the Localized Bases 

We rewrite the Hubbard Hamiltonian (3.14) by using the new fermion 
operators. The new representation turns out to be suitable for our purpose 
for taking into account both the particlelike nature of electrons and the 
band structure of the model. 

We first define the creation operator corresponding to the basis state 
~o Ixl as 

* - ( 5 . 1 )  Z o 
y e a  

for x e A and a = T, ]. Similarly we define the annihilation operator corre- 
sponding to the dual basis state ~c,-~ as 

b...= (5.2) 
y E A  

tbr x e A  and a = T ,  L 
By using the basic anticommutation relations (3.11) and (3.12), the 

definitions (5.1) and (5.2), and the duality relation (4.34), we find that 
these operators satisfy the anticommutation relations 

t t {a ..... ay,~} ={b  ...... b.,,,~} = 0 (5.3) 

and 

{at,.~,, b,, 3} = ~.,-..,,~.~ (5.4) 

for any x, y E A  and a, r =  T, ~. Note that (5.3) and (5.4) have exactly the 
same forms as the canonical anticommutation relations. 

By using the other duality relation (4.35), we can invert (5.1) and (5.2) 
to get 

c_,.~ ~,,: ,y,~ (5.5) 
)'~A 

and 

c,~ , ,= Y" (rolYh * h (5.6) � 9  x ' t ' x  ! v y , ~  

y ~A  
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5.2. Representation of the Hamiltonian 

We shall rewrite the Hamiltonian using the operators a~,, and b.,.,~,. As 
for the hopping part, we treat the modified Hamiltonian Hhop defined in 
(4.21), rather than the original Hhop. By substituting (5.5) and (5.6) into 
(4.21), we find that 

fi.o.: E E , 
~" = T,  ~, x , y , v . w ~ . ' l  

= • r,,..yax,~,b:,.~+ -~ ~ a,.~bx.~ (5.7) 
o . = r , ~  x I ~ A  A'  --, . '  o x E 

where we have used (4.29) and (4.30), which determine the action of 7", and 
the duality relation (4.34). The representation (5.7) makes the band struc- 
ture manifest. 

Similarly we can rewrite the interaction Hamiltonian (3.15) as 

(cp,: a., .r)((~p_ ,. ) b:,r)(cp., ,  av.~ . 
x i,. I', i1,, -- E / l  

-- ~ Uy.o.,,..: a,,.ra t ~b,,',~ b:n 
y .  l , ,  w ,  z E .el 

where the effective interaction is given by 

(5 .8 )  

U.,.,,:,,.,: = U ~, ~!,:"l~p~!'~(~(,!"'~ol:')* (5.9) 
x ~ A  

Note that the interaction Hamiltonian Hin t in the new representation (5.8) 
is no longer local. 

Remark. It is also possible to write down a representation similar 
to (5.7) for the original hopping Hamiltonian 

* ) ,,,0, ghop= ~ r.,..,,a.,..~by,, + ~. * Zx,  y a x ,  a b y , a  
a = l , , L  x - . . ~ A ,  ~ x v ~ A '  

with properly defined r,..,, for x, y E A'. 

5.3. Elementary Facts About the "Ferromagnetic 
Ground States" 

We can now prove the basic statement about the "ferromagnetic ground 
states." 
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Proof  o f  Lemma 3.2. Since we are interested in states with 
Sto, = S . . . .  we can concentrate on the sector with SIt3~ = Sm~_,. States (with 
S~ot = Sin,x) in other sectors can be obtained by suitably applying the total 
spin lowering operator. Clearly Hint annihilates a state with SI3~= Sm,.~ as to t  

it contains only up-spin electrons. 
Because the conditions for Lemma 4.1 are satisfied, there is a finite 

energy gap between the lowest band and the remaining bands. In order to 
make the eigenvalue of Hho  p small, we need to use as many states from the 
lowest band. Since the electron number L a is identical to the dimension of 
the Hilbert space Jt~ for the loest band, this can be done in a unique 
way, and we find 

O ~ = (  1-I a.*,-.r) ~ , ~  (5.11) 
\ x  ~ g|o / 

is the desired "ferromagnetic ground state." By operating with Hhop in the 
representation (5.10), we find t h a t / 4 0  r = E 0 0  r with 

E0= ~ r.,.x=Laro, o I (5.12) 
.u A o 

We also prove the theorem about the instability of the "ferromagnetic 
ground states." The proof is based on the standard variational argument. 

Proof  o f  Theorem 3.3. Let d~,~ be the creation operator for the 
Bloch state (4.6) in the lowest band with the wavenumber vector k ~ Jr ,  
and let el(k) be the corresponding energy eigenvalue. Let kmin and k ... .  be 
such that 

el(kmin) ~< el(k) ~< e l (kmax)  (5.13) 

holds for any kec , f .  The bandwidth is given by g=el(kmax)-el(kmin) .  
Take a variational state 

(5.14) 

The energy expectation value of the state tJbva r is easily shown to satisfy 

( (J~ var, HOvar)  

( ( i~  . . . .  ( P v a r )  
~< Eo - g+  U = Emin(Smax)  - g--b U ( 5 . 1 5 )  

The claimed instability follows when g>  U. | 
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5.4. Flat-Band Ferromagnetism 

In refs. 47 and 34, Theorem 3.1, which establishes flat-band ferro- 
magnetism, was proved for the models with v = 1. Although the extension 
to the general case is not hard, we present it here for completeness. 

Proof of  Theorem 3. 1. The flat-band model is characterized by 
r,..: ,=0 for any x, y e A  o. Then it is easily verified [from, say, (5.10)] that 
Hhop>~0. We also know that Hint/>0, and hence H~>0. From (5.12), on 
the other hand, one finds that the "ferromagnetic ground state" ~ t  of 
(5.11) has vanishing energy, and hence is a ground state of H. The remain- 
ing task is to determine all the other ground states. 

Let �9 be an arbitrary ground state with L d electrons. We obviously 
have 

Hhop q5 = 0 (5.16) 

and 

Hint~ =0 (5.17) 

which means that q5 is at the same time a ground state of Hho p and of Hin t 

As we discussed in Section 2.1, this is a special feature of flat-band models. 
Since Hint of (3.15) is a sum of nonnegative terms, (5.17) implies 

n,.tnx.~q~=0 for each x e A .  Since n.,.tn,.~=(cx.tc.,..~)*(c.,..tc,..~ ), this 
further implies c,..tc.,..~ ~ = 0 for each x e A. By using the inversion formula 
(5.6) and noting that c,,~ . ~.,,~ (q~_,:) =~k.,. for the flat-band models [see Sec- 
tion 4.2, especially (4.23)], this reduces to the following useful condition: 

,i ,c.,'l,t ,~--~t. I,  q~=0 (5.18) ~ x  ' t ' x  U y ,  TU--..L 

) ' . : E A  

The relation (5.16) implies that the state ~ consists only of the single- 
electron states from the lowest (flat) band. Therefore we expand it as 

(,OA * / ( I - [  * )qsv,c (5.19) ~b= ~. f ( A ,  B) a.,..t a:,..~ 
A , B ~ : I o  . / \ x e B  / 

where the sum is taken over all subsets A, B c A  o such that [A[ + [B I = L  a, 
and f ( A ,  B) are coefficients. 

For x e  Ao and ~ of the form (5.19), the condition (5.18) becomes 

b, . . tb , . .~=O (5.20) 
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because of the definition (4.23) of the ~k states. By using the anticommuta- 
tion relation (5.4), (5.20) implies that f ( A ,  B) = 0 whenever A n B g: ~ .  
Thus the expansion (5.19) can be reorganized as 

q~ = ~ g ( a )  a. , . .~x ~ 

a .~" o 

where the sum is now taken over all the possible "spin configurations" 
a = (a(x)),,.E Ao with a(x) = "[, J,. 

For x e A '  and ~ of the form (5.21), the condition (5.18) becomes 

~" (b.,.,rb_,,t-b:,Tb.,, ~) ~ = 0  (5.22) 

y > ' _  

where A o ( x ) = { y ~ A o  I l y - x l = x / / v / 2 } ,  and we ordered this set in an 
arbitrary manner. Since any site x ~ A,, is "occupied" in the representation 
(5.21), the condition (5.22) is satisfied only when w e  h a v e  36 

(bv.rb:, l -b:.rb~,l)  ~ = 0  (5.23) 

for any y, z s A o ( x )  with y r  for some x e A ' .  
By substituting the expansion (5.21) into the condition (5.23), we find 

that the coefficients satisfy 

g(a) = g(a,,-) (5.24) 

where ay,__ is the spin configuration obtained by switching a(y) and a(z) in 
the original a. The relation (5.24) along with the expansion (5.21) implies 
that ~ can be written as 

L d 

~ =  y '  ~M(S,;,)M~r 
M = O  

(5.25) 

with suitable coefficients o~ M. Here .~'- - . ~  iS ~2~ is the spin-lowering 
~ t o t  - -  ~ t o t  - -  tot  

operator. This proves the desired theorem. | 

~6This is only true when the electron number  is L d= IAol. We treated only the special 
models with v = 1 in refs. 47 and 34, where this step can be extended to other electron 
numbers,  
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5.5. Basis for the Many-Electron System 

We shall introduce a basis for describing many-electron problems. 
Let seA ,  and let A c A  be a subset with IA] = L  d -  1. We define 

] 
where T,. is the translation operator (3.32). The state ~,.,A(k) is an element 
of the Hilbert space J~,  (3.34), of the states with momentum k and a single 
down-spin electron. Clearly ~s,A(k) with different (s, A) can define the 
same state. For seA,,  (with a ueqi), one can take a unique yeAo  such 
that s = u - y .  Then we have 

~Js, A( k ) -~ ei~ 4 + ,,( k ) (5.27) 

where A + y =  { x + y l x e A } ,  and 0eR.  
Let Ao=Ao\{O}. We define 

1 
I2( k ) = - ~  ~uo,~T,,( k ) (5.28) 

where ~(k)>  0 is a real function of k which will be determined later in the 
proof. We note that /2(k)  is our approximate spin-wave excitation, which 
plays the central role in our proof. 

Finally, we define our basis #k for the space J~  as 

~ k =  {I2(k)} w { 7t,,A(k) l ueql, A =A with IAI = L  a -  1 and 

(u ,A)r  ffo) } (5.29) 

6. PROOF OF THE MAIN THEOREMS 

In the present section, we shall describe the proof of our main 
theorems on the stability of ferromagnetism and the lower bound for the 
spin-wave dispersion relation. We make use of various estimates which will 
be proved in later sections. 

6.1. Basic Lemma 

Let us define 

/ t  =/thop + Hi,t (6.1) 
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w h e r e  /~hop is the modified hopping Hamiltonian (4.21) and Hi, t is the 
standard interaction Hamiltonian (3.15). For basis states ~, ~ e ~ k ,  we 
define the matrix elements h[ T, ~ ]  e C of the Hamiltonian Jq above by the 
unique expansion 

H e =  ~ h [ ~ , r  t (6.2) 

Note that only states from Mk with a fixed k appear in the right-hand side 
of (6.2) since/4 is translation invariant and the momentum k is conserved. 

For q5 e ~k, we define 

D[~] =Re[h[~,  ~]] - ~ Ih[~, ~31 
v-,~ ~.\1 ,~} 

(6.3) 

Then we have the following lemma. The basic statement is elementary and 
well known (in standard linear algebra), but it serves as a basis of our 
proof. 

I.emma 6.1. Let Esw(k) be the energy of the spin-wave excitation 
defined in Section 3.4. Then for each k e ~f, we have 

Esw(k) ~> min D [ ~ ]  (6.4) 
r E s~k 

Proof. Let L'(k) be the lowest eigenvalue of H in the Hilbert space 
Y~, (3.34). We first claim that Esw(k ) ~> E(k). This is a straightforward 
consequence of the operator inequality H>~H [which follows from (6.1) 
and (4.22)] and the fact that both H and H commute with 7",. ( x e Z  d) 
and .~,(3 ~ 

~ t o t  " 

Thus the desired bound (6.4) follows from the inequality 

/~(k) >~ min D[cD] (6.5) 

which is indeed a straightfoward consequence of a well-known relation in 
elementary linear algebra. To show (6.5), let E be an eigenvalue of / t ,  and 
45oe ~ be the corresponding eigenstate. We expand ~o as ~o = 
)2,p~ge~ C(~u) ~, where C(gt) are coefficients. From (6.2) and the eigenvalue 
equation/~q~o = E~o, we find that C(~) satisfy 

EC(~)= ~ h[(D, ~]  C(7') (6.6) 
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for any �9 e ~k- Let ~ '  e ~k be the state such that l C( 7~)/C(~')I ~< 1 holds 
for any 7re ~k. Then we have 

E =  
~ , ~  C(qY) 

t> Re[h[qY, </5']] - ~ Ih[qS', ~*]1 

= D [ ~ ' ]  (6.7) 

Since J~(k) is the smallest eigenvalue, the desired inequality (6.5) 
follows. I 

Being a very crude bound, we cannot expect (6.4) to yield meaningful 
results unless we use a basis which "almost diagonalizes" the low-energy 
part of the Hamiltonian. As we shall see below, it turns out that the basis 
we constructed in Section 5.5 indeed has such properties. 

6.2. Est imates of the  M a t r i x  E lements  

We shall summarize the results of Sections 7 and 8, where we estimate 
various matrix elements. 

Before stating the results, it is convenient to introduce a new labeling 
of the special states ~ e ~ k  which have nonvanishing matrix elements 
h[~g, f2(k)]. For  any u~~ and r e A o ,  we define 

~tt, r(k)= Z Jk..x- t e a,.+,.,bx+,..r ~r  (6.8) 
X E ,4o 

where qSl=(I~y~.A,,a~,T)~va c is the "ferromagnetic ground state." By 
noting that * a~. r, can relate the state (6.8) to T,.[ 17I ..... ,,, a,, r ] = I-I .... ,, we 
the general state 7*s.a(k) of (5.26) as 

cI),,,r(k)= ~ eik'"T.,.[ *a,,.lbr, t (1-I a* 
X @ Ao  \ y  E A o  --  

=s nErJ e XT,[a'(H ) 1 . ,,.1 a~, t qSvar 
N E A , ,  ~ E | \ { r }  . '  -" o 

= sgn[ r]  ~,,. A,,\I ~} (k) (6.9) 
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where sgn[r]  = _ 1. By using (6.9), we can rewrite (5.28) as 

g2(k) = ~ k )  ~~176 (6.10) 

Let Ao + c Ao be a special subset with the property that for any s, t ~ Ao 
such that svSt, we have either s - - t E A o  + or t - - s e A o  + (and not both). An 
example is 

A+ = {XeAo [ O<x, {XeAo l x,=O, } 

{ k..) x ~ A  o X l = X 2 = O , O < x 3  ~ k..3 . . .  

w x ~ A o  x t = x 2  . . . . .  Xa_~=O,O<Xd<~ (6.11) 

For uEqg, rEA' ,  and s, t~Ao  such that s - t e A  + , we define 

~,,r,,(k)= ~ . ik. . ,-~t , , t  . . . .  ~ ,x+,,,W.,.+r, tb,.+,.Tbx+s.T~t (6.12) 
x ~ A a  

It can be shown that the only states ~ r  such that h[ g~, O(k)]  :~0 
can be written in the form O,.~(k) or �9 ..... ,.s(k) with suitable u, r, t, and s. 
See Section 7. 

By using the representations (5.7) and (5.8) for the Hamiltonians, we 
can express the matrix elements h[ ~, ~ ]  explicitly in terms of the effective 
hopping r.,..y and the effective interaction U.v.v;,.:. We leave the derivation 
to Section 7, and summarize the results as the following lemma. 

Lemma 6.2. For any u, r, t, and s as in (6.8) or (6.12), we have 

h[I2(k),I2(k)]=Eo+2s~Ao(sinki---~s)2[]s.o;.~.o 

h[g-2(k), ~,,.r(k)] =(~u.oo~(k)(e - i k ' r -  1) z~.o 

(6.13) 

+ct(k) ~ (e-ik '~--e -ik''') b's.r:,.s (6.14) 
s ~ A o  

822/84/3-4-18 
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h[12(k), r ..... ,..,.(k)] =a(k)(e-ik's--e -ik'') Ds.,:,., 

1 (eik. ~ h[r .... ~ -1 ) to . ,  

1 +~--~ E (eik"--eik's) ~r,,,-":s,r 

sEAo 
and 

(6.15) 

(6.16) 

h[qb,,.,:,.s(k ), 12(k)] = ( - ~  ( e i k ' - e  ik'') O,.r:s. , (6.17) 

It should be noted that these matrix elements are not symmetric, reflecting 
that the basis ~k is not orthonormal. 

By combining the expressions (6.13)-(6.17), the bounds (4.32) and 
(4.33) for r.,..,,, the representation (5.9) for ~,,. ,,; ,.,: in terms of the basis 
states cp!~. "1 and ~!;"), and the bounds (4.25)-(4.28) and (4.36)-(4.39) for 
these states, we can derive explicit bounds for the matrix elements and their 
sums. Again we leave all the derivations to Section 8, and summarize the 
results as the following lemma. 

Lemma 6.3. Under the assumptions that 2 ~2o  and [p[ ~Po ,  we 
have 

Re[ h[12(k ) f2(k ) ] ] >~ Eo +-~ ( l - C, lpl - - ~ )  G(k ) (6.18) 

with G(k) defined in (3.36), 

~. [h[g2(k),~]l<~o~(k)(B, RlPlt+~-_U) lkl 
tP $ .~k\{ Q(k) } 

(6.19) 

Ih[~,,.r(k), O(k)]l  ~< B~ R IPl t q 22 ~ Ikl (6.20) 

and 

I C 6 U 
Ih[~ ..... ,.,(k), s'2(k)]l <~c~(k ~ ) 2---~-_ Ikl (6.21) 

Here Ci (i = 1, 2, 3, 4, 5, 6) are positive constants which depend only on d, 
v, and R. 
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We can perform a similar analysis for the matrix elements which do 
not involve the state O(k). For �9 e.~k\{O(k)},  we define 

b [ r  = Re[h[r r ] - ~ Ih['/', ~31 (6.22) 

Then we prove the following in Section 8.4. 

L e m m a  6.4. Assume that 2 >/24, [Pl ~< P0, and K3t [Pl ~ U<~ g4A3t, 
where 24, Po, K3, and K4 are constants which depend only on d, v, and R. 
Then we have 

~2t 
b[ ~,,,~(k)] >~ Eo +-~- (6.23) 

for any usqi and A c A  such that IAI =La--I  and Ac~A'4:f~, 

22t 
/~[ ~,, . ,(k)] >1 E o + ~ (6.24) 

lbr u :~ o, and 

U 
/3[ ~o.,.(k) ] >~ Eo +-~- (6.25) 

for r =/= o. 

6.3. Proof of Theorem 3.6 

We will now prove Theorem 3.6 for the lower bound of the spin-wave 
excitation energy, which is one of most important results. In the proof, we 
make use of Lemmas 6.3 and 6.4. We will later confirm that the conditions 
for these lemmas are satisfied. 

From Lemma 6.1, we find that the desired lower bound (3.38) follows 
if we show 

D [ ~ ]  >~ Eo + Fz -~ G( k ) (6.26) 

for any q~ e ~k. [Recall that Eo = Emin(Smax).] 
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We shall first verify (6.26) for �9 = 7t,,,A(k)e ~k such that 

h[Tt,.a(k),t2(k)] = 0  (6.27) 

Then, comparing the definitions (6.3) and (6.22), we find D[ ~,,.A(k)] = 
/317',.A(k)] for such 7~,,,A(k). We also claim that the condition (6.27) 
inevitably implies A h A '  4 : ~ .  To see this, we note that the converse 
A c~ A' = ~ means A = Ao\{r} for some r e Ao, and hence 7t,,.A(k) is equal 
to -t-ab,j(k). [See (6.9).] Therefore we can use the lower bound (6.23) 
to find 

22t U 
D[ V',,.,,( k ) ] = b [  ~,,,~(k)] >1 Eo + ~ -  >. Eo + F~ -fi a( k ) (6.28) 

where the final bound is derived by noting that G(k) <<. 2 2~+ i(a) and F 2 ~< 1, 
and assuming that 

,;[6 t --~-/> 2v+2 (~) (6.29) 

Therefore the desired inequality (6.26) is verified for �9 = 7t,.A(k) such that 
(6.27) holds. 

Next we examine the inequality (6.26) for the states which do not 
satisfy the condition (6.27). They are the states O(k), ~,,r(k), and 
r ..... ,.s(k) defined in (5.28) [see also (6.10)], (6.8), and (6.12), respectively. 

As for the state ~,.r(k), we use the definitions (6.3), (6.22), and the 
bounds (6.24) and (6.20) to get 

D[ r ] = b[ q~,.,(k) ] -Ih[~,.,(k). t2(k)] I 

>~Eoq U 1 (  C4Ulpl f~__U) 
2 oL(k) B,R Ipl t +  ,~-------~+ Ikl (6.30) 

Let us choose ~r as 

4 Ikl ( C 4 U Ipl + C5 U'~ 
o~(k) =------~ B,R IPl t +  2----- ~ -  23 ) (6.31) 

Then (6.30) becomes 

U>_ U 
D[~. ,~(k)]  ~>Eo+ 4 ~'E~ G(k) (6.32) 
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To get the final bound, we have made a further assumption that 

We have shown the desired bound (6.26) for r = r 
The state r (where we require r e A') satisfies the condition for 

the bound (6.23). By combining (6.23) with the bound (6.21), and using 
(6.31), we have 

D[ r . . . .  ,,s(k) ] = D[,~ ..... , , ,(k) ] - Ih[  ~ ..... t ,s(k) ,  O(k)]l 
22l 1 C~__y 

>~ E o -t 2 0t(k) _ Ik[ 

= E o  -I 
2 

22l C 6 U 

22t 
~>E0-t 2 

22t 
>~Eo+- Z- 

422(Bi R Ipl t + C 4 Ulpl/2 2 + c5 u/2 3) 

C62 U 
4C5 

Eo + F2-~G(k) (6.34) 

where, to get the final bound, we required 

0 <~ U <~ K22t 

with K,_ = C5/C 6, and 

(6.35) 

26t .~ + 
--ff~>2-' 3 ( d )  (6.36) 

We have shown the bound (6.26) for �9 = ~/',,.r.,..,.(k). 
Finally we examine the state I2(k), which is our trial state for the 

elementary spin-wave excitation. By using the bounds (6.18) and (6.19) and 
the choice (6.3,1) of ~(k), we get 
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+Cs + B R).ztlPl~ -4 ~ (C3+BIR ~2I~IUP])(C4 ]pl ). 1 U J ]kl2 

U 
= Eo + F2 ~ G(k) (6.37) 

with suitable positive constants A~, A2, and .4 3. Here we used the bound 

Ikl2~<rc 2 sin <~---~G(k) (6.38) 
i=l 

which follows from Ik,I ~ re, and further assumed that 

A 3 ~ ~< 1 (6.39) U 

We have thus confirmed the desired bound (6.26) for all ~ , .  This 
means that the desired lower bound (3.38) for the spin-wave excitation 
energy has been proved. 

It remains to examine the conditions for the model parameters 
assumed in the proof. The assumptions made during the proof are (6.29), 
(6.33), (6.35), (6.36), and (6.39). Among them (6.35) and (6.39) are 
explicitly assumed in the statement of the theorem. 

Since we shall choose )-3 so that 23/> ).4 ~ ).0, the conditions about ). 
and p stated in Lemmas 6.3 and 6.4 are satisfied. 

Let us set 

23 max {2o, / /d\\]/5 ).4, (kg22v + 3 ~ i1; ) , (22v+3 (d))  
,/4 } 

, (Kz/K4) l/~-, (K3/A3) 1/2 

(6.40) 

From the assumption 2/>23 (with the above 23) and the assumed (6.35) 
and (6.39), we can verify that the conditions (6.29), (6.33), (6.36), and 
K3 [p[ t <~ U<~K423t (which is required in Lemma 6.4) are satisfied. Finally 
the conditions 2/> 20 and 2 >/24 required in Lemmas 6.3 and 6.4, respec- 
tively, are satisfied since 2~> 24/>2 o. This completes the proof of the 
theorem. 
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6.4. Proof  of T h e o r e m  3.4 

We now prove our main theorem, which states the local stability of 
the "ferromagnetic ground states." 

Theorem 3.4 follows from the following statement, which has more 
general (but more compliated) conditions. 

L e m m a  6.5. The local stability inequality (3.31) is valid if either of 
the following is satisfied: 

(i) 2>/23, [PI~<P0, A~lpI+Azk-1+A.~22tlPl U - 1 < I ,  and 0 <  
U <~ K,_2t. 

(ii) 2 ) 2 3  , Ipl<~p0, A~IpI+A22-~+A321pl(Kz)-l<l,  and 
U>~ Kz2t. 

The constants A~, A z, and A3 are the same as those in Theorem 3.6. 

The lemma actually is the most natural way of expressing our stability 
theorem. The conditions (3.29) and (3.30) in Theorem 3.4 were introduced 
to give an easily accessible sufficient condition for condition (i) or (ii) in 
Lemma 6.5. 

Proof of Theorem 3.4, Given Lemma 6.5. We set 2z = max{ 2~, A2/4}, 
p~ =min{p0,  (4At)- t} ,  p~ =K,_(4A3) - l ,  and KI=4A 3. Suppose that the 
conditions in Theorem 3.4 are satisfied. 

We first assume 0 <<. U<, K22t. Then we have A 1 ]Pl ~< 1/4, A2/2 <~ 1/4, 
and A322t Ip[/U<~ 1/4. It is obvious that all the conditions in (i) are 
satisfied. 

Next we assume U>~K,_2t. Again we have A1 IPl ~< 1/4, A2/).~1/4, 
and A32 IpI/K2 <~ 1/4. The conditions in (ii) are satisfied. | 

In what follows we prove Lemma 6.5. 
For each state �9 which is an eigenstate of (Stot) z with Sto~ = Sm,x - 1, 

we can take its S U(2) rotation ~ which satisfies S~to3~ ~ = (S ... .  - 1)~. Since 
q5 and ~ have the same energy, it suffices to concentrate on the space 

o~Sm.x_ I = {t~ [ S ( t 3 ~ / = ( g m a  x -  1) liD} (6.41) 

and prove the stability theorem. By using ~ defined in (3.34), the above 
space is decomposed 

~sm.x_, = (~ 9ffk (6.42) 
k e .~f" 
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We first assume that the condition (i) in Lemma 6.5 is satisfied. Then 
the assumptions of Theorem 3.6 are automatically satisfied, and we also 
have ~ > 0 .  Thus for any k e ~ "  such that k ~ o = ( 0  ..... 0) the lowest 
energy Esw(k) in the sector ~ satisfies 

Esw(k) > E0 = gmin(Srnax) (6.43) 

Recalling the decomposition (6.41), onre finds that this proves the desired 
bound Emin(Sma x --  1 ) > Emin(Smax) except in the sector ~o. 

To deal with the sector Jfo is not hard. We note that the state (2(o) is 
written as 

1 
~(o) = ~ St~ , q5 t (6.44) 

where S~t = SIl)tot - ZOtot'~ is the spin-lowering operator. This means that s 
is nothing but one of the "ferromagnetic ground states" and has the total 
spin Stot = Sm,x. Let Emin(S .... - 1, o) be the lowest energy in the sector 
with Stot =S in ,x -1 .  Then, by repeating the argument in the proof of 
Lemma 6.1, we find that 

Emin(Sma x --  1, o) ~ min D[q~] (6.45) 

The right-hand side can be bounded from below by using the inequalities 
(6.28), (6.32), and (6.34). We get 

gmin(gma x -  1, O) i> E 0 4- m i n  ._t,  4 '  - > E~ (6.46) 

which completes the proof of the desired local stability inequality (3.31 ). 
The only remaining task is to prove the inequality (3.31) when the 

condition (ii) in Lemma 6.5 is satisfied. 37 Note that U is not bounded from 
above in this case. 

The key ingredient in the extension is to realize that Emin(Smax) does 
not depend on U, while E ~ ( S m , x -  1) is increasing in U. The latter fact 
follows by noting that Hin t is increasing in U (as an operator), both / '/hop 

and H~,t commute with the total spin operator, and Emin(Sma x - - 1 )  is the 
lowest energy in the sector with the fixed Stot. 

Suppose that the condition (ii) in the Remark after Theorem 3.4 is 
satisfied. Then by setting U=K22t, the condition (i) in Lemma 6.5 is 
satisfied, and we have Emi.(Sm~ - 1 ) > Em~,(Sm~x). Because of the increasing 

37 The following argument was suggested to the author by Andreas Mielke. 
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property of Emin(ama x -  1), this inequality remains valid if we increase U 
with other parameters kept fixed. This proves the local stability inequality 
(3.31). 

7. R E P R E S E N T A T I O N  OF THE M A T R I X  E L E M E N T S  

Here we will prove Lemma 6.2 about the representation of the matrix 
elements involving the states ~2(k), ~,,,~(k), and q5 .... ,.s(k). 

7.1. T r e a t m e n t  of the Hopping Hami l tonian  

By operating /~hop with in the form (5.7) on the state fI)o.r(k ) [see 
(6.8)] and using the anticommutation relations (5.3), (5.4), we get 

-r-Ihopq'o Ak) = ( Y'. 
�9 \ ) ' .  V ~ A o  

a :  T.,L 

= -  ~ 
p ,v~  Ao 

+ E 
p. y E Ao 

+ E 
p, yE.4o 

\ 
t t ) ~_~ oik'P,-~t h d~ 

T), vay . e rav ,  o. t. ~ p . . [ U p + r , T . r .  f 
/ pEAo 

Zp +r ,,t eik'Patp , lbo, r ~r  

Z3 3 eik'Patp, ibp+r t ~ t  

: a ik  " p a t h 
y . p ~  " y , l ~ p + r ,  TC~T (7.1) 

We shall make the change of variables p = x, v = x + s (with x, s ~ Ao) in 
the first term, and the change of variables y = x ,  p = x + s - r  (with 
x, S~Ao)  in the second term. By also using (5.12), we have 

Flhop~o.,.(k)=EoCbo, r ( k ) _  ~, ik..,. , z,..se axAbx+s.T~ T 
.x'.s ~ Ao 

"~ 2 "7" a i k ' ( s - - r )  a ik  " x ' ~ t  
~o ,a ._r  ~ ~ -.,. lbx+s., ~r  

x ,s  r Ao 

= E o ~ o . r ( k ) +  ~ rr,~.(dkls-"l-1)Cbo, s(k) (7.2) 
S E A o 

where we made use of the translation invariance of r,.:,. Following the 
definition (6.2) of matrix elements, we define the matrix elements 
hhop [ ~tt, (i0] by the unique expansion 

Hhop~=  ~ hhop[ ~u, q~] ~ (7.3) 
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By comparing (7.2) with this definition, we find 

hhop[ ~5o.s(k), r r(k) ] = ~..,.E o + rr.s(e ik't '~'-r)- l) (7.4) 

By recalling s  -~ qSo.o(k), we find that (7.4) yields 

hhoo[g2(k), I2(k)] = E0 (7.5) 

hhop[12(k), clgo,~(k) ] = a(k  )(e - i k ~ -  1) rr.o (7.6) 

and 

1 
hhop[ qSo.,.(k), .Q(k)] = ~ (e ̀ k ' -  1) 

~tK) 
(7.7) 

7.2. T rea tment  of the Interact ion Hami l tonian  

Before calculating the matrix elements of the interaction Hamiltonian, 
we recall the representation (5.8), and decompose it as H~., = /4! ]~+ H! 2~ 

- - l n I  - - ~ I n t  

with 

m t  = a~,.,b,.,,b:a U,,.,,:,,..:%,.T (7.8) 
_1' E / l  0 t ' ,  I r ,  : E ./l 

and 

H!'-) Z - , t ,,, = U,,,v:..__a;, ra,,,tb,..+b__.r (7.9) 
) ' ~A"  t.,.~.r..zc~A 

Note that hrcJ) and I4 ~2) "'int "'int are not Hermitian. 
We apply HI,' ~ to ~, , , . (k)  and simplify the expression by using the 

anticommutation relations (5.3), (5.4) to get 

U;,.,,:,..:a,..ra,,.~b,..~b=~ ~ �9 ,,.lbp 
), E zl 0 p E Ao 

p. i i ' . z  E A 

= ~ ~fl, t u  o i k ' p r ,  t l. t'~ 
. + p , )  . . . .  v . ~ U p + r . T ' * ' T  

rE.4  
) ' , p ~ A o  

Z ~ i k . p  "t -- Up +,,,,:p + .... e a~,~ b_-.r �9 1 (7.10) 
uE :] 

z, p e A o  

We note that v e A can be uniquely decomposed as v = x + u' with x e Ao 
and u ' e q / .  We further make the change of variables p = x + w - r ,  
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y = x + s - - r  (with w, sEAo) in the first term [in the right-hand side of 
(7.10)], and the change of variables z = x + w, p = x -  s (with w, s ~ A o) in 
the second term. Then we get 

. . . . . .  - e i k ' ( x + w  = ~, U~-+ . . . . . .  +,,'.~-+,+,. ~..,-+ ..... -r)a;+,,'.lbx+,,..Tq~T 
it' E d]/ 

X ,S ,  II" E A o 

--  ~ Fi" ell,-.( . . . . . . .  ) , , t  b,_+ ~t 
~ . x ' + r - - s . x + u ' ; x + t t - - s , x + u '  ~ ' x + u ' , l .  . w , ~  

tt' E J]/ 
x . . 7 . w f f  A o 

= 2 (grs. , , '+,.: , ,+,, .se'k""-"'--g~., , '+,;, , . , .+.,e-iks)r (7.11) 

S . W ~ M o  

where we used the translation invariance of ~.,,;,,..__. 
We again define the matrix elements him[g t, ~ ]  by the unique 

expansion 

Hi.t q5 = ~ hintl- ~/, I~ ] ~ J (7.12) 
~ e a ~ k  

Then we can read off from (7.11) that 

h,, , [  r r ] 

= e i k ' l  . . . . .  " ) - -  g , .  ,, '  + r , ,  w + s  e - i k ' s )  (7.13) Z (Os,,,, +r:,,+,,. . . . . . . .  
S ff A o 

By setting u' = w = o  in (7.13), we get 

Ih,t[f2(k), r ) ~ (e-ik '"--e -iks) O~..r; .... (7.14) 
S ~ A o  

Next, we set u = r = o  in (7.3) to get 

1 
= ~ U s ,  u , ; w ,  s e  - -  ~ o , u ,  + s , o , w  + s  I hi,t[qb,,,,,.(k), 12(k)] ~ - ~ . ~ ,  (r, ,k... D e-ik~'~ 

o 

1 
=0~(k) y '  ( e " k ' - - e ' k ~ ' )  O,,, s;,.,,. (7.15) 

,~a,, 

where in the second term we used the translation invariance and the sym- 
metry as 

0o. , , ,+,:o. , .+. ,=0 ...... ,: ....... . = D , ,  ,; ...... 



608 Tasaki 

and then replaced s ~  - s .  Finally we set u = u ' = r = w = o  in (7.13) to get 

hint[g'2(k), I2(k)] = ~ (1 - e  - i k s )  Os.o;~.o 
s e A o  

=�89 Z 
s E A a  

/ . k.s '~'- 
= 2 . ~ o  ~,sm --~-) 0.,..o;,,o (7.16) 

where we used O~.o;s,o= Oo_s:,,,_s= 0 ..... :~.,o, which follows from the 
translation invariance and the symmetry of Uy,~;,,... Note that we do not 
assume any reflection invariance. 

We are now ready to prove some of the expressions in Lemma 6.2. The 
expression (6.13) follows by summing (7.5) and (7.16), the expression 
(6.14) follows by summing (7.6) and (7.14), and the expression (6.16) 
follows by summing (7.7) and (7.15). 

We next calculate the action of (7.9) as 

{2) Hi.t Oo.,,(k)= 2 
y e ,1'  

U, I t ' , - -  ~ .t][ 

~ + * 
Uy, v:,,.,:a,, ra,.ib,,..lb-_,r ~', eik'Patp, ibp, t ~  t 

p e A o  

= - E  
y e A ' 
v ~  A 

p . . -  e Ao 

-- ik . p t "~ ~) 
U, , , , , ;p . :e  a , , . l a y ,  Tb-- .Tbp,  r t (7.17) 

In the final expression, we note that the summand is vanishing for p = z, 
and decompose the sum over p, z as 

Y" ( .--)= ~ ( - . . )+  ~ (...) (7.18) 
p , z  e .'lo p ,  z e A,,  p ,  z e Ao  

p C : z  p - - z e A ,  + z - - p e A  + 

where A + is defined in (6.11). We then switch the variables z and p in the 
second sum to get 

(2} Hint r ~ (eik "p -  eik:)  ~, - * + = Uy.t,;p.=av.iay.Tb:.Tbp.T~Sr (7.19) 
p ,  z E A  u t, E A  

p - - z e A ,  + y E A "  

We write v = x + u with x e Ao and u e qi, and make the change of variables 
y = x  +r,  p = x  + s, and z = x  + t (with r e A ' ,  s, t e A o  such that s - t e A  + ) 
to get 
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(2} 
Hin t q~o,o(k) 

= E 
u e "~l 
r ~ A '  

s ,  I E Ao  
s - - t e A  + 

= E 
ue~/ 
r e A "  

s . t e A o  
s - - t e A o  + 

(eik''" elkt) U,-,..,.t ~ ~k..,- + at -- , , ,  e ax+.,.t .~.+~.)bx+,,tb.~.+~.tCT 
.x" ~ A o  

(e ik" - -e  ik't) O~,,,;s.t cb ..... ,.~(k) (7.20) 

This leads us to 

1 (e i k ' ~ -  e ik'') O~ ,,',t h~.,[ V ..... ,..,(k), a (  k ) ] = ~ . . . .  (7.21) 

which gives the desired expression (6.17) since there are no corresponding 
[_jr(]) contributions f rom/ )hop  or  - - i~t -  

T o  prove the only remaining expression (6.15), we calculate 

( 1 1  " . . -  
H i n t  r ..... ,..,(k)= y '  Ox+t,~;.,.+,.x+re 'k ~a~.lbx+s.r~ t 

o e A  
x e A o  

- -  E FI oik " x a t  h el) 
~ x  + s , t , ; x  + u,.x- + r  ~ v,,~ U x + t,'[ "a~ T 

y e a  
X e A o  

+ (other terms) (7.22) 

where (other terms) do not  contain any contr ibut ions to Cl)o.o(k). Since we 
are interested in calculating the matrix elements h i n t [ ~ o , o ( k ) ,  ~ . . . .  , , s ( k ) ] ,  

we shall pick up only those terms which have some contr ibut ions to 
r This allows us to sum only over v e Ao instead of  v e A. We can 
also consider only x such that  x + s = v in the first term, and x + t = v in 
the second term. Then we get 

v e A o  

F I  e i k ' ( v - t ) , . , t  k r15 
- -  E V v + s - - t , v ; v + u - - t , v + r - - t  ~ t'. I. u v,  T "~" ] " 

O E A o  

+ (other terms) 

= 61,; , .r(e- ik 's--e  - i k ' )  CPo.o(k ) 

+ (other  terms) (7.23) 
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which implies 

h i . . [Q(k ) ,  t/:. .... ,.~,(k)] = o ~ ( k ) ( e - ' k ' - - e  - i k ' ' )  ~,..,: .... (7.24) 

Since there are no corresponding contributions from /1hop or --,.tH'!R), this 
gives the desired expression (6.15). This completes the proof of Lemma 6.2. 

8. B O U N D S  ON THE M A T R I X  ELEMENTS 

Here we prove Lemmas 6.3 and 6.4, which state various bounds for 
the matrix elements and their sums. In the proofs we shall use the proper- 
ties of the localized bases summarized in Lemmas 4.2-4.4, which will be 
proved in Section 10. In order to make use of these lemmas, we have to 
assume that 2/> 20 and [Pl 2 - 2 ~ < r 0  �9 The bound for 2 is assumed in the 
statement of Lemma 6.3. In Lemma 6.4, we assumed the stronger condition 
2 >/2 4. (We will choose 2 4 SO that •4 ~ "~0") The bound Ipl ;t-2 ~< ro follows 
from the assumption IPl ~<Po in Lemmas 6.3 and 6.4, since we shall now set 
P0 = (2o)2ro - 

8.1. Bound for h [ Q ( k ) ,  f2(k)]  

We first prove the lower bound (6.18) for Re[h[[2(k), g2(k)]]. In fact 
we prove the stronger estimate 

h[~(k),s <~-~(C, [pl+~)G(k) (8.1) 

which implies the desired (6.18), 
With the goal (8.1) in mind, we will bound the quantity 

~ 4  

(~(k) = -~ (h[  f2(k), .f2(k) ] - Eo) 

= 2 ~ x ~ ,  ' sin 0.,.,,,: ..... 
224 )-" (sin k2s)2 = _ _  ~ ! , : . ( ~ ! o ) ) ,  - . ,  ( , I .  ,&,. (~o.) (8.2) 

$ E A o 
x E A  

where we used the expression (6.13) for the matrix element and the 
representation (5.9) for the effective interaction. Let us introduce 

( x )  _ ( m ( x ) ~ ,  ) I t ( X )  .-. (.,,-} ~ (,,-) i k  •.,,-) q.,, - , , . , .  , - - , . , .  , q.,, =q~>; - - , , ,  (8.3) 
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where ~,,-i is the localized basis state (4.23), (4.24) of the flat-band model. 
Then (8.2) can be written as 

C(k) = 22' .,~,, (sin ~ ~ )  -' 
x ~ . , I  

x ,t'.,. ,.,- ~,.,. ~_,. v,.,. + O ~ . : ' ) ( r  

= Go(k) + Gl(k) + G,_(k) + G3(k) + G4(k) (8.4) 

where Gi(k) denotes the collection of terms which contain the ith power of 
~)'s when we expand the left-hand side. In the following, we shall control 
Gi for each i = 0, 1, 2, 3, and 4. 

We first control Go(k). It gives the most dominant contribution as 

( G0(k)=2)4  ~ (~!,!,))2(~.,?.,)2 sin 
S E .4 o 
x E z l  

~ (s ink ' ( f+g)~' -=G(k)  (8.5, ~ 2  

. f  ~ .~,, g E . '~l \ 

~(*'~ See (3.8) and (3.9) for the where we used the expression (4.23) of ,.,: . 
definitions of ~o and ~ . .  

We bound the absolute value of G~(k). One of the four terms in G~(k) 
is bounded as 

[" . k .  s'~'- 22'~ .,. ~,, ~, s,n --~--,~ 0!,~" r !,.~ !,f>) "- 

X G ; |  

~<224 B] IPI+B2 1 ( 
22 23 ~ ~ sin 

.F E .~,, g ~ . '~! 

_ Bt Ipl + B2 G(k) (8.6) 
2 

where we used (4.36) to get the bound q,.=~~ ~< (B~ ]p[ + B2)/2"-. The other 
three terms in G~(k) can be bounded similarly, and we get 

IG,(k)l ~<4Bi IPl +2B,_ G(k) (8.7) 
2 
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We bound the absolute value of G2(k). One of the six terms in G2(k) is 
bounded as 

1. k. sV ,~!,." 0!;" ksln-7-,) <+<:>)= 
xl!!A 

S~Ao x ~i A 

( ,  ~o))= Ikl = 
qx " Isl 

�9 qx ~'x ~ l s l -  " '~ ~(~) 

( 1 \ 
~4 Z [S[" [r](s)[ �9 [S[, [•(oS)[--{- ~ Z 2 is], [r])s)[ �9 [S]. [0)s)[)/ 

2 \ s ~ m  �9 o 

"}-2 Ikl2~2f~.~ ~ (s~EAo IS--/I " l~.[l-s}i)(s~Ao Is--Ui " I~')l) 

~ 1k[2~4 ( ~ ._l_ --'~2 )21~~ 2 '~ (8 .8 )  

where we used [sin(k.s/2)l-<< Ikl. Isl/2, Isl ~ 2  ] s - f l ,  and the bounds 
(4.28) and (4.39) on the summability of the basis states�9 Another term 

2 q _ _  (0!,.~.))2 .,.,-"~~176149 
S~Ao,.X'r 

can be bounded by the same quantity as in (8.8). 
The remaining four terms in G2(k)  have the common structure 

xEA 

~<222f~_o [r~~ �9 [q~i+g)[ (sin k" (f--+g)) 2 

gca~f 
(8.9) 

where q denotes either r/ or 0- (The four terms are obtained by assigning 
r/or 0 with each q.) We can bound Iq~~ and Iq~f+g)l using (4.25) or (4.36), 
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depending on whether g = 1/ or ~. By summing the resulting bounds and 
(8.8), we get 

IG,(k), ~< {(1 " 2 I~176 +B,_)} _ + ~ )  BIR IPl (BIR ]Pi Ikl 2 

,8,0, 

with constants C~ and B 3 depending only on d, v, and R. Here we used the 
assumed bounds 2 ) 2 0  and IpL ~<po, as well as the bound (6.38) to bound 
Ik[-" by G(k). 

The quantities G3(k ) and G4(k), which contain higher powers of ~/ 
or ~, can be bounded in a similar (in fact easier) manner, and we get 

[G3(k)] ~< ~ G(k) (8.11) 
, 4 -  

and 

85 IG4(k)l ~<~x G(k) (8.12) 

with constants B 4 and B s which depend only on d, v, and R. 
By summing up (8.5), (8.7), and (8.10)-(8.12), and comparing the 

result with (8.2) and (8.4), we finally get 

I~r(k)_G(k)l<~(1 4BIIpI+2B" B3 B4Ip[ a s )  
- 2 - c ,  Ipl 2-" 2-' ~ G ( k )  

<~(1-Cl]pl--~)G(k) (8.13) 

with a constant C2 which depends only on d, v, and R. This is nothing but 
the desired (8.1). 

8.2. Bound for ~" Ih[Q(k), qJ][ 

We shall prove the bound (6.19) for the sum of the off-diagonal matrix 
elements h[12(k), ~ ]  stated in Lemma 6.3. We first note that, since ~u with 

822/84/3.-4-19 



614 Tasaki 

h[f2(k) ,  ~u] :~0 is either of the form ~,,.,.(k) of (6.8) or �9 ..... ,.~(k) of (6.12), 
we can write the desired quantity as 

Ih[f2(k), ~]1 

lhEY2(k), ~,,,,.(k)] I + Y'. 
I l E a l  I lEa l /  
r ~ Ao r ~ h '  

l u ,  r )  # ~ ( o . o )  .s',r ~ A o  

( s - - t E A  + ) 

Ih[f2(k), r ..... ,..~(k)l (8.14) 

To bound the first term in the right-hand side of (8.14), we use the 
expression (6.14) for the matrix element to get 

E 
r E A .  

Oi,  r )  ~ ( o . o )  

Ih[g2(k), ~,,.~(k)] I 

~< ~ ~(k) I(e - / k ' ' -  1) r,.,ol 
r ~ A o 

+ E 
u E JII 

r, s E A o 

(u,r) ~ ( o , o )  

o~(k) I(e- 'kr-e -ik'') O.,..r:,.sl 

~ , ( k )  Ikl Y~ Irl-I~,.ol + ~ k ) I k l  ~ I,'-sl-I0~..,:,,..,I (8.15) 
r ~ .4o u ~ ~ 

(u , , - )  ~ ( o . o )  

The first term in the right-hand side is readily bounded by 
oL(k) B~Rt  lPl'lkl from the summability (4.33) of r,..,,. To bound /the 
second term, we use the representation (5.9) for g~s.r; ...... and the bound 
Ir-s l  ~< I r -x l  + Is-xl to get 

Z Ir--sl. IO~,,;,,A 
r,  s E A o  

( u , r )  v~ ( o . o )  

< - r E  
r , s  ~ Ao u~O~/ 

x ~ . A  

I ~(s)  ~(r) ( t r - x l  + I s - x l )  ~o,. q~.,. I" ~~176 s) 
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xE.4 s e a  tEA ~ 1 �9 ' ,, " o , i .  

u E  41 

z {,<,', (z ,,-.,,,o,:',1( z z 
X ~ A  s ~  I / \ r E A ~  S E  I ." *' o ( �9 z o 

u E 'r 

X E A  ' ; E A o  "~E | ~E 1 �9 , "  ," o . , "  o 

= 2 U  Y' { ...} + 2U Y' 1...} 
. y E A '  N E / I  o 
II E ~ u e all 

I~o,. I 2" B~ R IPl + B2 
X E **|' 
II E Oll 

"" ( ) (  ' { -Ol  ~ , + B 2 ) ( l + ~ )  + 2 U  ~2 I~o.(,.") I B, RI ;~+B; 1 I 
X E .'lo 
t t  E 'r 

U 
~<B~__ (8.16) 

where the constant B 6 depends only on d, v, and R. We have used the 
expressions (4.23), (4.24) for ~!,!') and the bounds (4.27), (4.38), (4.39), and 
(4.25) for the sum of the basis states. 

Next we bound the second term in the right-hand side of (8.14). We 
again use the expression (6.15) and the representation (5.9) to get 

E 
u E Jl l  

r E A '  

S. I E A  o 

( s - - t E A  + ) 

]h[C2(k), ~..,..,..,.(k)][ 

t E A '  
$ , I E A  o 

~<~(k) Ikl U 

I(e-ik~--e -ik'') O,.,:,.A 

E 
x E A  
u ~ o #  

r ~ A '  

s ,  t ~ A .  

[ s - t ]  =(~)=(') (r) �9 Iv,.,. v,,. -I~o!,!'~o,. I (8.17) 
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To bound the sum, we again use Is-tl ~ Is-xl +lt-xl ,  and the sym- 
metry between s and t as we did in (8.16), to get 

E 
x~A 
tEA" 

&tEAo 

[s-t[.lqL,.q~x[.-(s)~m [Cpx ~px[.,) (r) 

42 .~:~A {](P!~!')I (s~EAo IS--Xl " I(P!vs}I)(/E~Ao I~O!~}])(r~A, I~!rr)l)} u~W 
=2 E {...}+2 E { }  

x~A'  xEAo 
IlEal tt E "~l 

-<2E 
X@I|' ue~ 

+2E 
x~A o 

1 
~<B 7 2- 5 (8.18) 

By combining (8.14)-18.18), we finally get the desired bound (6.19) 
with C3 = B6 + BT. 

8.3. Bounds for the Other  Mat r ix  Elements 

Here we prove the bounds (6.20) and (6.21) stated in Lemma 6.3. 
Instead of proving (6.20) for fixed u E q / and  r ~ Ao with (u, r)4= (o, o), 

we prove the bound for their sum 

Ih[~,,.r(k),12(k)]l<<, B I R I p l  t +  2-----y--+ Ikl 

rEA o 
~,,.r~l,,.ol (8.19) 

which clearly implies the desired (6.20). By using the expression (6.16) for 
the matrix element, we have 
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Ih[~, ,r(k),  g2(k)] I 
u~~ 

r + A o  
{u , r )  v~ ( o , o )  

~-~k) r~Aol(eik'r--1)ro.~l+ 1--~ I ( e i k r - - e  ik 's )  ~( k ) ,,~., O,,,~.,,.A 
r , s ~ h o  

<~ B,R IPltlkl +--~ ~. Ir-sl.  IO,,.~.:s.A (8.20) 
r , s  E A o  

where we used the summability (4.33) of [ro,~]. The second sum can be 
treated in exactly the same manner as we did for the similar sum in (8.16). 
As a result, we get 

Z Ir--sl'lO,,.:;:.rl~U ~ Ir--sl.l~!,! '> - - - ' ~ .  ~o.,..19x ~o.,. I < S >  It) 

r , s ~ a o  r, s E h o  
x ~ A  x ~ i A  

u ,~ ,r 

• 2 

This is the same as the fifth line in (8.16), except that cp and ~ are switched. 
Because of the drastic difference in the localization properties of the 
states cp and ~b, this results in the remarkable difference between 
2 Ih[12(k), ff~,,,,.(k)]l and Y~ Ih[qS,.,.(k), t2(k)][. Again by decomposing the 
sum over x as 

E { } =  Z { } +  Z { }  
. '~'~A x ~ A '  . ' r ~A o  

and using the expression (4.23) for ~b I'l and the bounds (4.27), (4.28), and 
(4.38) for the sum of the basis states, we can further bound (8.21) as 

uEq~' 

r , s  E A o 
x E A  

x e A' " =2-~ q- 
U + 'r 



618 Tasaki 

/2"  B, IP l \ / 2  v B, IPI+B~'~ x~+-~-2 )~-+ ;_ ) 

z ,+ ", - 

x ~ A t l  
u e ~ll 

_ _  C s  U 
Ulpl + 2 3 C4)~ 2 (8.22) 

where C4 and C5 are constants. The desired (8.19) follows from (8.20) and 
(8.22). 

Next we show the bound (6.21) for h[(b ..... ,..,.(k), O(k)].  It is done in 
a similar manner to the way we bounded h[g2(k), ~,,.,..,.s(k)] in (8.17) and 
(8.18). From (6.15) and (5.9), we have 

Ih[ a~,,.,..,.s(k), n(k) ] l  

1 

Ikl U ~ i_1,. )_(,~ <~-~-~.,-'7A Is- t l .  q,; q~.,. I" Iq,!,!"~0.',91 

2 Ikl U + - -  y'  
~(k) .,-~ A,, 

~(k) Z ce!,!" q,,. I I s -x l .  I~!,.~"1 1~!,5)1 
A* E A "~" o I o 

lop,,, l-Jq~!,-~)l 2" + B, ~(k) Z '"' + B , I  _ _ _'_~ ~2 _ 
X E A '  

loP., - I" IcPx I - -  - 1 -- - 

1 C6 U 
~(k~ ~ Ikl (8.23) 

which is the desired (6.21). 
This completes the proof of Lemma 6.3. 

8.4. Proof  of Lernrna 6.4 

We shall prove Lemma 6.4, which controls the sum/3[  ~',.A(k)] of the 
matrix elements. We recall that the assumptions for this lemma are dif- 
ferent from those for Lemma 6.3. 
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By using the representation (5.8) of the interaction Hamiltonian and 
the definition (5.26) of the basis state ~..A(k), we find 

H i n t  tli,,,A(k) 

= Uy.v;,,.~a,,.T ~ ,b,,,~b_-.Ta..~ ~v~ 
x ~ A o  ),,V, z E A  t 

xe~Ao  y , t '  z e A  t e A z ~ y  

= ~ sgnEy, z ;A]  0~,.,,. .... ~v.A~_,.(k) (8.24) 
y.t, , .z e A 

where we have used the translation invariance of Oy.,,;,,,__. The set A:~y  is 
obtained by replacing the sire z in A with y, and sgn[ y, z; A ] = _+ 1 comes 
from the reordering of the fermion oprators. The matrix element hint[ ~,,, ~,(k), 
t[t,,,A(k)] c a n  be (in principle) obtained from (8.24) if we take into account 
the identification (5.27) between the basis states and rewrite 7So, A:_,.(k) in 
terms of some 7~,, A,(k) e ~k. But here we take a slightly different strategy. 

By hint[ '" ,  ' " ]  let us denote the pseudo matrix elements which are 
directly read off from (8.24) without taking into account the identification 
(5.27). We immediately find from (8.24) that 

hint[ gs,,.a:_y(k), }[tu, A(k)]  = sgn[y, z; A] U,,.o;..__ (8.25) 

and, by a suitable replacement of symbols, that 

Tlint[ ~,.A(k), ~v.,,:_,.(k)] = sgn[y, z; A] U,,:;y.o (8.26) 

Since some of the diagonal elements in the true matrix elements 
hint['", ' " ]  are treated as off-diagonal elements in the pseudo matrix 
elements hint["-, ""] ,  we observe that 

and 

Y'. Ihint[ ~.,.~(k), '~-II 
#, ~ ~ . \ {  ~u,,.,dk),Q(k) } 

<~ ~ IT~in, E ~,,..,,(k), r 

Re[hint[ ~,.A(k), ~,.A(k)] ] 

>~ Re[hint[ ~,,.A(k), ~,,.A(k)] ] 

- Y'. Ihint[ ~.. . , (k),  r 
E a~k\{ ~,,,A(k), ~(k)} 

(8.27) 

(8.28) 
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for any u~q/ ,  A c A  with [AI=La-1 such that (u,A)#(o, Ao), where 
Ao=Ao\{O}. From (8.27) and (8.28), we can bound the contribution to 
/3[ ~,,.A(k)] of (6.22) from the interaction Hamiltonian as 

/3i.,[ ~...,(k)] 

=Re[hi~t[~,.A(k), ~v,,,A(k)] ] -- 

~> Re [ hi=t[ ~v,,.,~ (k), ~..~(k)] ] - 2 
r  ~,,,A(kI..f2(k)} 

Ihint[ ~P,,,.4(k), ~]l 

Ihi.,[ e,,.~,(k), ~]1 

(8.29) 

.<v{(~ 

-(1 
U 

_ ~  B, IPI+B._)'-( I~oI B, IPI'~ + + ~_ :+-y-+--~_)  

;~; ; j  

(8.31) 

for any (u, A) :~(o,//o). 
By using (8.26), we can evaluate the sum in the right-hand side of 

(8.29) as 

IT~,.E ~e...,(k), ~]1 
~l-~ ~ ..~k \ { tIlu. Al k ), .Q( k ) } 

( v , ) , ) ~ ( u , z )  

~< U ~ I~o.,. ~o,_ l - ' " )  - ' : ~  �9 I~o.,.r (8.30) 
x ,  ),, v, -- ~ A 

( t . ' . ) , )  # ( u . - ' )  

where we used the representation (5.9) for the effective interaction U,,._.;,,.,,. 
We further use the bounds (4.23), (4.24), (4.27), and (4.38) for the sum of 
the localized basis states to bound (8.30) as 

Y, IT, i,,[ ~,,,~,(z~), ~]r  
tlt;' ~. ,a,~k \ { ~[~t,. A ( k l . .Q ( k ) } 

- u(~];,~)-'(~o];,~)-" 

c ) ~< U max E I0!,!"~I max E I~0~!"~I u(%,''~ (%,("' 
\u'E~axEA / \u'~.-Wx~A 
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where the constant B s depends only on d, v, and R. We have made use of 
the bounds ;t>~24 and [Pl ~<Po. 

By using (8.25) and the representation (5.9) for U,,.:,;,,.:,, we write the 
diagonal element of hi~t[ ' " ,  ""]  as 

T/int[ gJ.,.4(k), ~ , , , A ( k ) ]  = }-'. ~r,  :;,,.:, 
3'cA 

(?l") c?l "l(co"'l co I:'l)* (8.32) = U  ~ ~.,. -.4 -.,- ~.,. 
x E ./I 
yea  

Again by using the properties (4.27) and (4.38) of the basis states, we have 

Re[h~,~t[ ~P,,.A(k), ~,..4(k)] ] 

> ~ Z [ u e A ]  -I,,~ "- I,,~ . URe[(~o,, ){(~o,, ) }2] 

--  U ~ ~(u) ~(v) -(v) ko, ~o,:1 I~o},!" �9 gJ:  
xEA 
),cA 

Ix, y) ~ ( u , u )  

>~X[ueA] -,,~ "- I,,I �9 2] U R e [ ( %  ) {(q,,, ) } 

x 1 3'~A 

x ( m a x  ~ I~o!,:Yq)--[c~l,,"l]2 [~ol,~'~['- } 
\ x 'EA  yeA 

U 
> ~ X [ u e A ]  U - - B 9 - ~  (8.33) 

where X [ ' " ]  is the indicator function with x [ t r u e e v e n t ] = l  
Z[ false event ] = 0. 

Substituting (8.31) and (8.33) into (8.29), we get 

and 

U 
/ ) in t [  ~Ju, A( k ) ] ~ X[ u ~" A ]  U -  B i o  -~- (8.34) 

Next we examine the matrix elements of the modified hopping 
Hamiltonian /~hop- By using the representation (5.7) and the definition 
(5.26), we get 
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/ l ,  op ~,,,A(k) 

=32zt [(A~J { u } ) n A ' l  ~..,4(k) 

+ eU"XTx I Z 
x e A o  y, z e A o  

a = T , , t  

= (eo I(A u {u}) n Aol + 322t 1(-4 ~J {u} ) n A'I) ~.,A(k) 

+X[ueAo] ~ r;,,,,~y,A(k)+ ~ ry.__sgn[y,z;A] ~..A=_,.(k) 
y E A o \ { u }  z~.A C~Ao 

y~Ao\A (8.35) 

where we wrote eo = ry. y for y e A o. Note that X[ u ~ A o ] = 3 .... as long as 
u~ qi. 

From (8.35), we can read off the matrix elements o f / t ,  op as 

hhor,[~,,A(k), ~..A(k)] =e0 I(A ~J {u})nAol +~22t I(A u {u}) n A ' l  

(8.36) 

hhop[ ~,,,A(k), ~v,,,A=_y(k)] = sgn[y, z; A] Z[Z, yeAo] 3_.., (8.37) 

and 

hhop[~o,A(k),~y,A(k)] =ro, s (8.38) 

where ~,,A(k) in (8.38) should be properly interpreted as a state in &k 
using the identification (5.27). We did not define pseudo matrix elements 
here since hhop[ ~Vo..4(k), ~, .  A(k)] does not contain any diagonal elements. 

Let us use (8.37) and (8.38) to evaluate the sum of the off-diagonal 
matrix elements as 

E 
' / '  ~ .~k-\{ ' / ' . ,  A(k), Or  

z e A  C~Ao y e A o \ { o }  
.I, E A o\A 

<~( IAo\Al +c5 .... ) B~t IPl 

=( IA c~A'l +1  +6..0)Bit IPl 

Ih,op[~,.A(k).~]l 

Ivo.yl 

(8.39) 

where we used the bound (4.32) for the sum of the effective hopping r~.y. 
The identity IAo\A[ = IA n A ' l  + 1 follows from IAI + 1 = IAol =L a. 
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By combining (8.36) and (8.39), we can evaluate the contribution of 
13[ ~U,.A(k)] from the hopping Hamiltonian as 

/3.00[ gz..A(k)] =h.op[  ~,,,A(k), T..A(k)] 

- ~ Ih.op[ ~..  A(k) ,  ~]1 
r E ~.\{ ~,,. A(k), O(k)} 

>>.eo(L a -  l - l A  c~A'l + 8 .... ) + 3 22t(iA c~A,l + l _ 8  .... ) 

--([A nA'[ + 1 +8 .... ) Bit Ipl (8.40) 

By summing up the contributions (8.34) and (8.40) from Hin t and 
/4hop, respectively, we can finally bound the desired quant i ty /3[  ~,,.A(k)] 
(6.22) as 

/3[ ~'.. Ak) ] =/3,.,[ ~.. A(k)] +/3.o.[ V'., Ak) ] 

U 
>~Eo+Z[uEA] U-Bio-~ 

+ (] 22t- eo- Bl t lpl ) ([A c~ A'l +1) 

+(--])~2t+eo--B~tlp[)8 .... (8.41) 

where we noted that Eo=Zx~A~ L,. ,.= L%o. See (5.12). 
The desired bounds (6.23)-(6.25) are derived by investigating the 

bound (8.41) in each situation. We first consider the case A c ~ A ' r  
Noting that IA~A'I~>I ,  8 .... ~ < l , x [ u e A ] > ~ 0 ,  ande0<<.Bttlp[,  we find 
from the basic bound (8.41) that 

3 
/3[ ~,,, A(k)]/> E0 -- B10 ~--~ ~ 22t -- 4B, t IP[ 

1 , 
~>Eo+~2- t  (8.42) 

which is the desired bound (6.23). To get the final inequality, we have here 
assumed that 

U 1.~ 1 B,o-~<~-~-t, 4B,t Ipl <~g2-t (8.43/ 
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We then turn to the case A c~ A' = ~ .  Then the state ~,,. A(k) is noth- 
ing but the state qs,.,(k) defined in (6.8). When uv~o, the basic bound 
(8.41) with [A c~A'[ = 0  and ~ .... = 0  yields 

U 3 2 
D[ ~,,.,( k ) ] ~ > E o - B , o ~ - + ~ 2  t - 2Bl t Ipl 

1 
>/Eo + ~ 22t (8.44) 

which is the desired bound (6.24). We again used (8.43). 
Finally, when u = o and r va o, we find that X[ u ~ A ] = 1, since the state 

~0 ~~ is doubly occupied. Thus the basic bound (8.41) yields 

D[ ~Po.,(k) ] >~ Eo + U -  BIo U -  2Bn t Ipl 

u 
>/Eo + ~- (8.45) 

which is the desired (6.25). To get the final inequality, we have assumed 

U U U 
2Btt IPl ~<~-, B n o ~ < ~  - (8.46) 

It only remains to examine the conditions for the parameters. We shall 
set / (3 = 8Bl, /s = (8Bio) -~, and 

24 = max{2o, 2B~o, ~ }  (8.47) 

and make the requirements as in the statement of Lemma 6.4. Then the 
conditions (8.43) and (8.46) are easily checked to be satisfied. Lemma 6.4 
has been proved. 

9. UPPER B O U N D  FOR THE S P I N - W A V E  ENERGY 

We will here prove Theorem 3.5, which states the upper bound (3.35) 
for the energy Esw(k) for the elementary spin-wave excitation with the 
wavenumber vector k ~ • .  In contrast to the corresponding lower bound, 
the upper bound can be proved by employing the standard variational 
argument. The new idea here is to use the state ~2(k) of (5.28) as a trial 
state. In the proof, we shall make use of Lemmas 4.2 and 4.4 about the 
localized basis states, and some estimates about the matrix elements proved 
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in Section 8 during the proof of Lemma 6.3. The assumption made in the 
statement of Theorem 3.5 guarantees that we can make use of these results. 
(See the beginning of Section 8.) 

Since we have s ~ ,  the lowest energy Esw(k) in the space 
satisfies the variational inequality 

.< (~(k), Hf2(k)) 
(9.1) 

where ( . , -)  denotes the inner product. Recalling the definitions o f /~  [see 
(4.21) and (6.1)] and the matrix elements (6.2), we can write 

Hg?(k)=ffIg?(k) 

= h[~(k) ,  ~ (k) ]  ~(k)  + y, 

r E A o  

(u, rlr 

h[r ,.(k), O(k)] r 

+ 2 
u~o// 
t e A '  

s ,  t E A o  

( S - - t E A o  + ) 

h[r O(k)] ~,.,.,,.,(k) (9.2) 

By noting that (r if r r  and ( r  ..... ,.s(k),f2(k))=O, we 
find 

(Q(k), Hf2(k)) = h[O(k), O(k)](f2(k), n(k)) 

nt- 2 h[CI)o.r (k), ( 2 ( k ) ] ( g ? ( k ) ,  r  ( 9 . 3 )  
r E / 1  o 

r ~ o  

Recalling the definition (6.8) of r and noting that 
(2(k) = 0c(k) -~ Cbo.o(k), we have 

(~o.o(k), ~o., . (k))=( ~ eik'-"a;.sb,..,r ~, e i~''' *a.,, sby+,..,~ t) 
X E 11 o _l' E / lo 

= L  a ~ e - i k ' / r  b* a~ la*o b T~bt) ~, T' x . t  .'. 1 ", (9.4) 

where we made use of the translation invariance to replace y to o. Note 
that we have encountered the operators a and b* for the first time in the 
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present paper. Going back to the definitions (5.1), (5.2), .we get the 
anticommutation relations 

{a+,. o ,  ,>,. , }  = (a)., .  ,, 6~,r (9.5) 

and 

{ b.*,.. , ,  b:.. 3} = (G-').,..y 6~,~ 

where the Gramm matrix G is given by 

(9.6) 

(G).,.,y= Z (q~(7."')* q~(:Y) (9.7) 
7 . E A  

and its inverse is 

(G -1) ...... = ~' (~b(")) * ~(") (9.8) 
. 7. --* 

- ' C A  

That (9.8) correctly defines the inverse of G can be easily verified by using 
the duality relations (4.34) and (4.35). The complicated anticommutation 
relations (9.5) and (9.6) are major drawbacks of the use of the non- 
orthogonal basis. 

By using (9.5) and (9.6), we can further evaluate (9.4) as 

I 
~ --ik.r ) (~o,o(k), ~o.r(k)) =L  a e (G)o. -1 .,. (G ).,-,r (q~T, ~r)  (9.9) 

."  1o 

As for the expectation value in the right-hand side of (9.1), we use (9.3) 
and (9.9) to get 

(12(k ), Hl2(k ) ) 
(O(k), O(k)) 

= h[t2(k), I2(k)] 

+~r~Ao(~o) o~(k)-' h[c~o.,(k), I2(kj](q~o,o(k), r 
o~(k)-'- (r o(k), ~o,o(k)) 

= h[12(k), 12(k) ] 

Z~Aot~o,  oc(k) h[ CP o,~(k), s ~.,.~Ao e-ik':"( G)o, x ( G-')s,~ 

q -ik..,- ).,..o Z.,.~Aoe (G)o..,.(G-' 
(9.10) 
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Since the first term in the right-hand side is already controlled by the 
bound (8.1), we only need to bound the second term. 

We start from the denominator of the final term in (9.10). By noting 
that Z.,-~A,, (G)o..,. (G-I).,.,o = 1, we have 

1 -  ~ -,k.~- ).,.,o e "(G)o..,.(G -t 
x E A  o 

=l ~" (1-e-ik' ')(G)o.x(G-l) ..... 
I x E A o 

~<lkl ~ Ixl.lIa) ...... (a-').,..ol 
X E A o 

X E A o  
y ,  7. E A 

~<B,, [P--I[ (9.11) 
22 

where we used (4.23), (4.24), (4.26), (4.25), and (4.36). We also noted that 
2 ) 2 o ,  [Pl ~<P0, and Ikl ~<x/Q~. Thus we get 

e-ik'(G)o.x (G-1)x,o ~ 1 +B12 _ (9.12) 
x o 

We now control the numerator of the final term in (9.10). By noting 
that Z_,.EAo(G)o.,,.(G-'),.r=O for rr we get 

~.~1o~ c~(k) h[ r ,.(k), ~2(k) ] .,-~ A,, e -,k. .(G)o..,. . ' .  r 

=1 ~ a(k)h[qS~ ~ (e-'k''--l)(G)~ 
r ~ A o \ { O ~  x ~ A o  

* r ~ A o \ { O }  ., ,  r E A o  

c ,  o Ipl + c5 
B~Rt [Pl + 2--------5----_ 23 / 

( , )  x Y .  Ixl.l(G)o..,.(G ).,..rl I/I 2 (9.13) 
x , r ~ A o  
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where we used (8.19) to control the sum of the matrix elements 
h[ ~o.r(k), I2(k)]. The remaining factor can be bounded as 

~, Ixl.t(G)o..,.(G-')x.~[ 
A', r E Ao 

Z ( I x - y l  + lyl)I~0~.~ �9 Iq,~:"'l. I~" '1 .  I~1="'1 
x ,  r E A o 

~< Bl3 -~, I (9.14) 

By collecting (9.1), (9.10), and (9.12)-(9.14) and by using the bound (8.1) 
for the matrix element h[t-2(k), O(k)] and the bound (6.38) for G(k), we 
finally get 

U G(k)+~(C, IPI+ ff-~)G(k) Esw(k) ~< E 0 + ~  

( C4 U Ipl + C s U ~  
+a l4  BIRtlPI+ ~ --~-3 j a(k) 

�9 A6 22t IPl-') 
<~Eo+x, kl+ Z +A521Pl+ -~ G(k) (9.15) 

which is the desired (3.35). 

10. C O N S T R U C T I O N  OF THE LOCALIZED BASES 

In the present section, we shall explicitly construct the localized bases 
{rp"v'}.,.~l and {~b'"}.,.,A and the dispersion relation el(k) and prove the 
summability stated in Lemmas 4.2-4.3. 

The main problem treated here is a perturbation theory in the finite- 
dimensional eigenvalue problem (4.9), where the unperturbed problem has 
an energy gap. It is well established that such a finite-dimensional pertur- 
bation theory can be controlled in a perfectly rigorous mannerJ 19"38~ 

However, there are some subtle points specific to the present problem. 
Here we are treating the set of eigenvalue problems indexed by the 
parameter k ~ ' .  Moreover, it is essential for us to explicitly construct 
(unnormalized) eigenvectors which are especially chosen to have a "nice" 
k dependence. We found that, for this purpose, it is better to directly deal 
with the Rayleigh-Schr6dinger perturbation theory in an explicit manner, 
rather than to make use of the general theory) tg" 381 Unfortunately, such an 
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analysis of perturbation theory requires rather involved technical estimates 
which are summarized in this lengthy section. 

10.1. States in the k-Space Representat ion 

The basic starting point in the construction of the bases is the 
Schr6dinger equation written in the form of (4.9), which is 

ev(k) = (22t M(k) + p tO(k ) )  v(k) (10.1) 

where v(k )=(v , , ( k ) ) ,~+ is a b-dimensional vector. The b x b  matrices 
M(k) =(M,,.,,,(k)) ..... ,+~+ and O(k)=(Q,, , , , ,(k)) ..... ,~+ are defined in (4.10) 
and (4.11), respectively. For  a fixed k e g l  [see (3.33) for the definition of 
the space =e],  (10.1) is an eigenvalue equation of a b x b  matrix. Here 
b =  I~1] =(~+,)+ 1 is the number of bands. From a solution v(k) of (10.1) 
for some k, we can construct the corresponding Bloch state in the real 
space by 

~.,. = e~k " "V ,,c,.l( k ) (10.2) 

where p(x) denotes the unique element in qi such that x c A~,.,. r The Bloch 
state ~p = (Cp.,.).,.~A becomes an eigenstate of the original Schr6dinger equa- 
tion (4.2) with the energy eigenvalue e. 

One of our major tasks in the following subsections is to construct, for 
each k e J{', a vector v<~ (v(,~ which satisfies 

el(k) vl~ = (22t M(k) + p r O ( k ) )  v<~ (10.3) 

where el(k) is the lowest eigenvalue for each k. In other words, el(k) is the 
dispersion relation of the lowest band. Thus the Bloch state ~0 = (rp.,.).,.+, 
constructed from v'~ according to (10.2) is an element of the Hilbert 
space .~o~t'~ [see (4.19)] for the lowest band. In our construction, we do ~ s ingle  

not normalize the vector vt~ We rather try to get a vl~ which has 
a "nice" k dependence so that we finally get sharply localized basis states. 

For  the moment, we assume that the desired vl~ is defined, and 
introduce other, related vectors. For each e ~ ? i  ' ( = q / \ { o } ) ,  we define a 
vector v<e>(k)- w~ -(v,,  (k)),~++ so that the Bloch state (10.2) constructed from 
vC"l(k) belongs to the Hilbert space Jt~'si,gte [see (4.19)] for the higher 
bands. For  this to be the case, it suffices to have orthogonality 38 

3s (.,.) denotes the standard inner product in the b-dimensional linear space. For v = (v,,),,,++ 
and w = (w,,),,,~, we define (v, w)= Y..,,, ++ (t,,,)* w,,. 

822/84/3-4-20 
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(vt~)(k), v(~ = 0  for each k~  ozr The vectors v(~)(k) are defined in terms 
of v(~ as 

f - v ~ ~  if u = o  

(~'k = ~ ( v  if u = e  v,, ( ) (o~ * (10.4) 

(o otherwise 

The required orthogonality is readily verified from the definition. It is also 
found that, for each k, the vectors v(el(k) with e ~ ] i  ' are linearly inde- 
pendent of each other. Therefore the collection {vt'~ for a fixed k 
forms a basis of C b. 

We also introduce the dual of the basis {v("~(k)} , , ~ .  For  each k ~ 3C, 
we define the Gramm matrix G(k) by 

(G(k)), , .  ,,,= (v(")(k), vI"'l(k)) (10.5) 

for u, u ' e  ql. Since the vectors v("l(k) with u s q/ are linearly independent, 
the corresponding Gramm matrix is invertible. We define the dual vectors by 

qI")(k)= ~ (G(k) - I ) , , , . , , v ( ' " l (k )  (10.6) 
u '  ~ oil 

for each u e q/. We again write the components of the dual vectors as 
~l")(k) = (g(,~.'~(k)),,.,~. By definition, we have 

(q("l(k), vI '"~(k))= ~,,.,,, (10.7) 

and 

(~l:")(k)) * vl,',")(k)=0...,, (10.8) 
w E ~ /  

for any u, u' e ~ and for any k e ozF. 

10.2. Construction of the Localized Basis States 

Since we have introduced the vectors (states) in the k-space represen- 
tation, let us describe how we construct the desired localized basis states. 
For x e A, we denote by/L(x) the unique site in the unit cell qb such that 
X ~ / ~ ( x )  �9 

For x, y ~ A, we define 

P 

~ v) -a  I dk  eik" ( ' -  ;'~,O,(y))tt.~ (2re) (1 0.9) 
J 
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and 

(•(t,) ( 2 n ) - d  f t tb  o i k ' ( x - - Y ) ~ ( I t ( Y ) ) t l r ~  (1O.lO) 

where j dk( ... ) is a shorthand for the sum ( 2 n / L ) a Z k ~ j r ( . .  �9 ). 
Let us prove the duality relation (4.34). By using the definition (10.9) 

and (10.10) and (uniquely) decomposing y e A as y = z + u with z ~ A o and 
u ~ ~ we get 

Y', ((k!,:"')*" ("') q)y 
y E 11 

= y' (2g) -2a f d k  d k '  e - i k ' l y - x ) + i k '  "(Y-X')ti~(l'f(")l(b'%'~*~%ulv) t ' ~ J ,  ' =l,(ylm}(l'(>:'l)lk"~"'~ ' 

yE /l 

= ~ ( 2 n ) - 2 d f d k d k  ' e--i(k--k'l ':--i(k--k') ' , ,+ik "x- ik ' 'x '  
II E J~[ 
z c~ Ao 

x(v,,'�91 (k) )  * v(,,"("') % ' ) 

= (2n ) -d  I dk ei~("-" ')(~(#("))(k), v("(" ' l l (k)) 

= (2g) - d  ~ dk  e u''c" - ' IX[  x - x '  ~ Ao]  

= &  . . . .  , ( 1 0 . 1 1 )  

where we used the duality relation (10.7) for v and ~. We have also noted 
that &~,(. , .) .~,l . , . , )=X[x--x'eAo] with the indicator function x [ t r u e ] = l ,  
z[false] =0.  The other duality relation (4.35) follows from the general 
argument about the uniqueness of the inverse matrix, or can be shown in 
a similar manner by using the corresponding relation (10.8). 

In Lemma 4.2, we claimed that the sets {~OI"I}.,.E~ ~ and {(#�91 
form bases of the Hilbert spaces up(I) and Jr'single, respectively. Note that, ~' single 
in (10.9), - ~'') q,.,: is constructed as a superposition of various Bloch states 

r,c,-t= ut(~l i f x ~ A o  and ;k..,-v~,(.,.)it,.,.i)~k~,.,, of the form (10.2). This means that v- ~-o single 
(p(") S 3(F'~ingl~ if X e A'. To prove the completeness of each basis, it therefore 
suffices to show that the union {~0("~}.,.~A is a basis of the whole Hilbert 
space Jf~ing~e" But the desired completeness follows readily from the duality 
relation (4.35). The same argument shows the corresponding claim about 
the completeness of the dual bases stated in Lemma 4.4. 

Finally we investigate the action of the modified hopping matrix 
T =  (i.,..y).,.y~A [see (4.20)] on the basis states. Noting the Bloch state is 
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given by (10.2), we see that the Schr6dinger equation (4.2) and Eq. (4.20) 
imply 

i k . x  (o) 
. ( e i k . x ' , ( / , )  { k ] ]  = ~ el(k)(e3 2 ik..,- v,,(.,.)(k))(,,) if u = 0 (10.12) 

~. L .,' ~"("') '"" ~ 2  t(e v/,i.,.)(k)) if ueql'  
X ' E A  

From (10.9) and (10.12), we get for x E A  that 

}-'. ?_ _,<p(.;,.)=(2rt)-Ufdk ~ r j~.(--'-.,-),(o) tk~ . ,  . ~ t - ,  .=,l~ t: tl(.7')~, 1 

--' E A  ~' E A  

=(2rc)-a ~ clk el(k) ik.(:-.,.)(o) e v/,(__)(k) 

2 "~v t o ( ) ' )  , ,  x ' t ' 7 .  

y e Ao 

which is nothing but (4.30) with r v __ 
(4.29) follows easily from (10.12). 

(10.13) 

defined as in (4.31). The relation 

10.3. Basic Setup of Perturbation Theory 

In the following construction of various vectors, we treat k E : *  as a 
fixed parameter. The k dependence of the vectors will play nontrivial roles 
only in the final Section 10.9. 

Let us first set p = 0  (corresponding to the flat-band model) in the 
Schr6dinger equation ( I 0.1 ). The eigenvector to(k) = (w,,(k)),, ~ ~: with the 
lowest eigenvalue e = 0 is given by 

{1_ if u = o  
w,,(k) = C,(k)/2 if ueql '  (10.14) 

where C,,(k) is defined in (4.12). We will construct our vt~ by the 
standard Rayleigh-Schr6dinger perturbation theory so that it coincides 
with w(k) if p = 0. 

For a fixed ksog,", we denote by P(k)=(P,,.,,,(k)),,.,,,~ the 
orthogonal projection (in the linear space C b) onto the vector w(k). From 
(10.14), we explicitly have 

I 1 if u = u ' = o  
. A(k)'~ -I -C,,(k)/2 if ueql',  u '=o 

P,,.,,,(k)= 1+-2,_-7--) Xl_c , , , ( k ) /2  if u=o, u'eql'  (10.15) 

L.C,,(k) C,,,(k)/2 2 if u,u'eql '  

where A(k) is defined in (4.13). 
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By comparing (10.I) and (4.14), we find that the matrix M(k) (with a 
fixed k) has simple eigenvalues 0, 1 + A(k)/)fl, and ( b -  2)-fold degenerate 
eigenvalue 1. Since w(k) is the eigenvector corresponding to the eigenvalue 
0, the matrix M(k)+ P(k) has eigenvalues not less than 1, and hence is 
invertible. We define 

W(k) = (M(k) + P(k)) - '  (10.16) 

From (4.10) and (10.15), we find 39 

A(k)'~-' 
M(k) + P(k)= I + 1 + - - ~ - j  a(k) | a(k) (10.17) 

where I is the identity matrix, and the vector a (k)= (a,,(k)),,~ ~/is defined 
a s  

fA(k)/2"- if u = o  
a u ( k )  (C,,(k)/2 if u ~ '  (10.18) 

By using the representation (10.17) and the general formula 

0( 
(I + ~ v |  = I -  vQv  (10.19) 0c(v, v) + 1 

we find from (10.16) that 

. A(k)'~ -1 
W(k) = I -  1 + ~ )  a(k)Qa(k)  (10.20) 

,4- ) 

where we noted (a(k), a(k))= {A(k)/2"-} + { A ( k ) / 2 2 }  2. 

Following the philosophy of the Rayleigh-Schr6dinger perturbation 
theory, we are going to express the eigenvector of (10.1) (for a fixed k) with 
the lowest eigenvalue et(k) as a power series in p as 

v'~ ~ p"v~,~ (10.21) 

where v(,~ is a vector independent of p. We require 

v~)(k) =w(k) (10.22) 

.~9 For  a rb i t r a ry  vectors  v =  (v,,),,~.~ and  w = (w,,),,e~/, we define their  Kronecke r  p roduc t  as 

v | w = (v,, w,,.),,. ,,,~ ~,1 which can  be regarded  as a b x b matr ix .  
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and 

(w(k), vl~ = 0 (10.23) 

for any 17/> 1. We also express the eigenvalue as 

e~(k)=t ~" p"e,(k) (10.24) 

where the zeroth order is vanishing since we have e,(k)--O when p = 0  
(which corresponds to the flat-band model). 

By substituting the expression (10.21) into the Schr6dinger equation 
(10.1) and collecting the terms with the n th power of p, we get 

Z 
j,l>O 

( j + / = n - -  1) 

ej+ l(k) v~~ = 22M(k) v~,~ + Q(k)-%_t~ l(k) (10.25) 

for any n t> I. In the present and the next subsection, summations like the 
above are always taken over integers (unless otherwise mentioned). The 
relation (10.25) is the basis of our perturbation theory. By taking the inner 
product with V~o~ w(k) in (10.25), we get 

(w(k), Q(k) vl~L,(k)) 
e,,(k) = (10.26) 

(w(k), w(k)) 

For n>~l, we have P(k)v~,~ because of (10.23). Thus, by using 
(10.16), we can write 

W(k) M(k)vl~'(k)= {M(k)+ P(k)} - '  {M(k)+ P(k)} v,,'~ ,O)(k) 
(10.27) 

for 17 >t 1. Applying W(k) from the left of (10.25) and using (10.27), we get 
the recursion relation 

1 
vl,~ = - ~  W(k) O.(k) vyL,(k) 

I (w(k), O(k) ~ol +T- Y. vj (k))w(k)v~O~(k) (10.28) 
j./~>0 (w(k), w(k)) 

( j+l=n - -  I )  

where we have substituted (10.26) for ej(k). Since the right-hand side of 
(10.28) only contains v~,~ with re<n, we can in principle determine 
vl,~ with any n by using (10.28) recursively. 
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Let us rewrite the recursion relation (10.28) in a more explicit form. 
By substituting (w(k), w(k))= 1 +(A(k)/22) [which follows from (10.14) 
and (4.13)] and the explicit form (10.20) of W(k), we find that (10.28) 
becomes 

v(~ = V(')+ V(?)+ V(3)+ Vr 4' (10.29) 

with 

1 
= v,,_~(k) (10.30) V(,, ') - ~  O(k) (o) 

- -  - -  V t t  - -  V(,~ I 22 ( h + l )  (a(k), O(k) "l~ ,(k)) a(/) (10.31) 
h=0 

,3, 1 ~ ( ~ ) h  
V,, -~__ - ~ (w(k), Q(k) vJ~ v~~ (10.32) 

11=0 j,l>~O 
( j +  I=n -- 1) 

and 

v?, 1 ~ ( h + l ) ( h + 2 ) ( ~  2 A ) ~ )  h 

= - ~ h - o  

x ~ (w(k), fl(k) v}~ v~~ a(k) 
j,l>~O 

( j + / = n - -  l) 

(10.33) 

10.4. Recursive Bounds for the Perturbat ion Coeff ic ients 

Let us construct the vector v(~ as in the expression (10.21) by using 
the recursion relations (10.28) and (10.29) along with the initial condition 
(10.22). The construction proceeds in an inductive manner. We first assume 
that the u component (where u e ql) of the vector vl~ can be written as 

, ~ J)~,= ~5 
,*% 

m ~ 0  

x E 
(si, ti)~all • 
with i = 1 ...., n 

S.t, ( S  i .  t i )  <~ (Si  + I �9 t i +  I ) 

~,(u; (Is,, t~)}, (uj/) 
withj = 1,..., m 

S. t .  l t j ~  u j +  l 

Q '--I~l Q i  si, ti (k)) n(j~l Cuj (k)) (10.34) 
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with k-independent coefficients ~](u; {(s;, t,)}, {uj}). In (10.34), the sum- 
mations over {(s;, t,)} ,=, ....... and {uj}j=, ....... are restricted to the combina- 
tions which satisfy (s;, t~) ~< (s;+ ~, t;+ ~) and uj<~ uj+,, respectively. Here we 
have introduced an arbitrary complete ordering in the sets q /x  ~_71 and q/'. 

Let us define 

0~,(n, m ) =  sup 
It 

{(s~. t 0 b =  x ...... 
{ ~q}j= t ....... 

I. ,(< {(s. t;)}. {uj} )1 (10.35) 

where the sup is taken over all the possible combinations that appear in 
(10.34) with the given m. The quantity c~(n, m) plays the essential role in 
our inductive proof. 

From (I0.14), it is obvious that V(o~ can be written in the 
form (10.34). We also find that the recursion relation (10.28) "preserves" 
the form (10.34) since the recursion essentially consists of multiplications 
by C,,(k) [or A(k) = Z,,E.~,, { C,,(k)} 2] and the matrix elements of O(k). See 
(10.29) and (10.30)-(10.33). This observation determines ~ (  .. .  ) uniquely, 
and formally "proves" the validity of the representation (10.34) if one 
neglects the problem of convergence. 

Let us turn to the harder problem of controlling ~(n ,  m) inductively 
and proving convergence of the sum in (10.34). Our strategy is to substitute 
the expression (10.34) for v(~")(k) ..... vl,,~ ~ ~(k) into the right-hand side of the 
recursion relation (10.28), reorganize the resulting expressions for v~,; ')(k) so 
that they become of the form of (10.34), and finally express the coefficients 

V ( O ) / k  ~ (o) ~ for vl,~ in terms of~�91 for t ~ ") ..... v,,_ t(k). The final expression leads 
us to an upper bound for 8)(n,m) in terms of 8(n', m') with n' < n  and 
m'<~m. See (10.36), (10.37), (10.39), (10.42), and (10.43). 

The above procedure is easy to describe, but is too complicated to be 
executed explicitly. We shall take a slightly less complicated way, where we 
skip the intermediate calculations and directly get the final upper bounds 
for 8~(n, m). To avoid too much complication, we write the desired upper 
bound as 

4 

0~](n, m) ~< ~ ~]J)(n, m) (10.36) 
j = l  

where ~cf/l(n, m) are suitable upper bounds for the contributions to 0q(n, m) 
from VJ  1 in the recursion formula (10.29). 

To bound the contribution from VI, ~ of (10.30) and get an upper 
bound ~1~), we assume that vl,~ is written as (10.34), and then ask which 
Q~.,.,,(k) in (10.34) comes from the O(k) which explicitly appears in the 
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right-hand side of (10.30). Since there are at most b 2 different Qs.,(k}'s, we 
can set 

0~l' l(n, m )  = b 2 a ( l l ) ( n -  1, m )  (10.37) 

To bound the contribution from VI~ ~ of (10.31), we note that one of 
the components of a(k), (10.18), is A(k)/2"-=Z,,,~.{C,,(k)/2}'-, and 
(b - 1 )-components of a(k) are of the form C,,(k)/2. By considering all the 
possible combinations of these components, we can set 

~l,-'~(n, m ) = b  2 ~. (h + 1 ) (b -  1) I' { ( b -  1) 2h+4 ( b -  1)-" 0~,(n- 1, m -  2 h - 4 )  
h = O  

+ (b  - 1) 2h+3 (b - I) 2 ~l(n - 1, in - 2 h  - 3) 

+ (b - l )-,I,+ 2 (b - l ) 0~,(n - l, m - 2h - 2)} (10.38) 

The prefactor b 2 appears for the same reason as in (10.37). The factors 
( b - l )  2h+4, ( b - l )  2h+s, and ( b - l )  -'h+2 are the upper bounds for the 
number of ways to identify C,(k)'s in (10.34) as coming from A(k) or a(k) 
in the right-hand side of (10.31). Since A(k) contains products of two 
C,(k)'s, we have the common factor ( b - I )  -v'. For convenience, we 
reorganize (]0.38) as 

~'~2'(n,m)= ~ b- ' (b+l )  h+ .... P ( h + l ) ~ ( n - l , p )  ~ ~t21.~ "~ tt V 2h -l- p, m -- lt 
h,p>~O .tt = 2, 3, 4 

(10.39) 

with ~2, = b - 1, and "~3;~121 = ~2~ = (b - 1 )-'. 
The next term V131 of (10.32) contains two v,,, (k) vectors. This means 

that we need to identify C,,(k)'s in vl,~ [in the form (10.34)] as either 
(1) coming from A(k) or w(k) explicitly contained in (10.32), (2) coming 
fi'om v}~ or (3) coming from v~~ Identifications of C,(k)'s into the 
classes 2 and 3 require a new combinatoric estimate. We need to count the 
number of ways to decompose (p + q) objects into p objects and q objects. 
There are ( b - 1 )  different kinds of objects, and we do not distinguish 
between objects of the same kind. [Of  course, the objects are C,,(k)'s]. 
A crude upper bound for the desired combinatoric number is obtained by 
considering what are the possible contents of p objects. This observation 
shows that the desired number is bounded from above by 

p + ( b - 1 ) - I  1 { p + ( b - 1 ) - l }  I b - ' ' - '  
( b -  I ) - l  ~ { ( b - I ) - I } !  

(I0.40) 
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Since there is a similar estimate with p replaced by q, the desired com- 
binatoric number  is bounded  from above by the quant i ty  F(b--1;p, q), 
where 

F ( g ; p , q ) = m i n ~ ( P + g - 1 ) g - '  ( q + g - 1 ) g - ' l  (10.41) 

An analogous combinator ic  problem arises when we identify Qs. ,(k)'s in 
vl,~ as coming from either fl(k),  v~.~ or v~~ in the r ight-hand side 
of (10.32). Consequent ly  we have the following upper  bound  for the con- 
tr ibution from V ~3~" 

0~3~(n, m) = ~ ~. b2(b-1)h+"'-~t'+q)F(b2;j,I)F(b-1;p,q) 
h,p,q>~O j , l>~O 

( j +  I = n  -- I ) 

XSl( j ,p)Sl( l ,q  ) ~ ~3~,~ (10.42) %p t " 2 h + p + q . m - - l t  
p = 0 .  1 

with ~o3~ = 1 and ~3~= b -  1. 
Finally, the contr ibut ion from V141 of (10.33) can be bounded  in a 

similar manner  as 

O~(14)(n, 'TI ) = ~ ~ b2(h+l ) (h+2)(b-1)  *+ .... , p + q ,  
2 h,p,q>~O j , l>~O 

( j + l = n - -  1) 

x F(b2; j, l) F(b - 1; p, q) o~(j, p)  ~ ( l ,  q) 

x ~, ,~4~5 
%p 2h + p + q. m - - i t  

p = 2 , 3 , 4 , 5  

with ~(2 4) : (b - 1 ), ~ 4 )  : b(b - 1 ), ~(4 4) : b(b - 1 )2, and ~(5 4) ~- (b - 1 )3. 

(10.43) 

10.5. Upper Bounds for the Coeff ic ients 

We shall carry out  an inductive p roof  of  upper  bounds for 0~(n, m). 
Our  inductive assumption is that there are constants  fl and y (determined 
later) which depend only on the band number  b, and we have 4~ 

~11' ym" 

~l(n', m') <~ (n' + I )b'-+ l (m' + 1 )b (10.44) 

4~ factors (n'+ 1) b'+l and (m'+ 1) I' are indispensable for carrying out our inductive 
proof. We do not mean, however, that (10.44) represents the correct asymptotic behavior 
of 0~t(n', m'). 
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for any nonnegative n' and m', such that n' < n and m' ~ m. Our goal is to 
prove the same bound for n '=  n and m '=  m. Since V~o~ w(k), we have 
~t(O,O)= 1 [by comparing (10.14), (10.34), and (10.35)], which clearly 
satisfies the assumption (10.44) provided that fl, y >t 1. 

In what follows, we shall bound each of 07If(n, m) in (10.36) by using 
the assumption (10.44). We start from ~]~(n, m). Since the right-hand side 
of (10.37) contains only ~l(n', m') with n' <n  and m' ~m, we can use the 
assumption (10.44) to get 

~ n - -  1 ~)rtt 

~]1 �91 m )  <~ b 2 ~ +-1 ( m  -t- 1 )b 

= ( n + l )  : + l ( m + l )  b \ - - - ~  / 
(10.45) 

Note that we have factored out the desired quantity in front. 
Next we investigate ~<~2~(n, m) by substituting the assumption (10.44) 

into (10.39). Again we factor out the desired quantity to get 

c~ll2)(n, m) 

-<2 
h,p>~O 

(n+ 1) b'+l (m+ 1)6 

{ (m+l~b 1)h(b--l~ m-p 
x 2 (h+l)\p--~-~-/  ( b -  

/,,:~>o \ )' / 

"~ p "J 2h + p, m -- lt 
.u =2 ,  3 .4  

f i n  - -  1 yP 
b2(b+ 1) h+m-p (h+ 1) --:r-- 

n ~ - §  b ~ :<21.~ %it~ V2h +p. m- -p  
p=2,3,4 

(10.46) 

We bound the sum over h and p as 

Y', ( h + l )  :m+l '~b  (b-l~ m-p ~,, 2h+p . . . .  ,, h,p~O \p+l /  (b--1)h ~ :1216 
\ )1 / p = 2 , 3 , 4  

p ~ 2 , 3 , 4  

m+l : 
,,~o m ~ - ~ J  ( h + l )  
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(b_ly,[e( .... 2.u - 1 )/4] 
~< Y. el-') 2 ~.tt 

I '  "~ 3 .4  \ '~ / h = O  

2b(h + 1) {(b 721)3} h 

+ ~. (m+l)b(h+l)~(b-l)'~ hI 
h = [ l m - - 2 p - - I ) / 4 ] + l  [ yZ j j 

~< ~ ff(2) 1 
, tt=2,3,4 ), 

+ ( m + l ) b (  m - 2 / t - 1 4  + 2 ) ( ( b ~ 1 ) 3 . )  '"'-2h+3'/4} 

(%" ~<2b+, ~ ~:,21 (10.47) 
p = 2 . 3 , 4  

where [ .-. ] is the Gauss symbol. The final inequality in (10.47) is valid for 
sufficiently large ),. By substituting (10.47) into (10.46), we get 

( n + l / ' " + l ( m + l )  b \ i, / ) 

{(b721)3 ( b - l )  5 (b~. l )6]  x 2/'+ l + ),---3~ 4- ),4 j (10.48) 

We postpone the estimate of ~13)(n, m), and treat 0~Cl4)(n, m). Again by 
substituting the inductive assumption (10.44) into (10.43), we get 

~(14)(17'1tl)~ h,p,q>~02 j,l>~O~ { b2(h+ l)(h+ (b- 1)/'+ .... ~v+q) 
{ j + l = n - -  1) 

x F(b "-; j, I) F(b- 1;p, q) 

flj yp fl/ yq 
( j +  1) 62+! ( p +  1) b ( l+  1) b2+l (q+  1) b 

bp 211 +p + q. m -- It 
1 1 = 2 , 3 . 4 ,  5 

fl" y"' b2 
$1S_, (n+  1) b-'+' ( m +  1) b fl 

(10.49) 
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with 

n + l  "/~+t 
St = ~ \ ' ( j-~] ~ i +  1)J F(bZ;j, l) 

j./>~O 
( j + / = n - l )  

(10.50) 

and 

S , =  ~ { ( h + l ) ( h + 2 )  ~,)/b 1\ m-I'+ql 
- ,,. p. q >_- 0 2 ( b -  1 ) '  

( o,+, )o } 
x ( p + l ) ( q + l )  F(b-1;p ,q)  ~ ~1~4,'6,_,,+,+q . . . .  ~, 

It =2 ,  3,4. 5 

10.51) 

We first bound S~. By using the symmetry between j and l in 10.50) 
and in F(b2; L 1), we have 

SI ~< 2 [I,,-~,v21 ( n + 1 ~ b2+' (J + b 2 -  1)~-1 10.52) 
,/=o \ ( j + l ) ( n - - j ) J  ]-~--~ 1)! 

By noting that the bounds n - j/> (n + 1 )/2 and (j + b 2 - -  1 ) <~ (b 2 - 1 )(j + 1 ) 
hold within the range of the summation, we can further bound St as 

1)_+__1 -~o'-+t ~l,,~,/,-J(b21)b'--t(j+l)b'--1 
S' ~<2 [(n + 1)/23 a=o ( J+  1)e2+1 (b2-  1) ! 

~2.2b.,+t ( h i - l )  b'-I ~ ( j + l )  -2 
(b2 -  1)! j=o 

=J(b  2) (10.53) 

where we introduced 

~2 ( g _ _  1 ) g - I  
J( g ) = T 2 g + ' -{ g--~v. (10.54) 

The quantity $2 in (10.51) can be bounded by combining the techniques 
used in the bounds (10.46), (10.47) and in the bounds (10.52), (10.53). The 
resulting bound is 

(b 721 )3 S2<~J(b- 1).2 b+l q- - -  
b ( b - l )  4 b ( b - 1 )  6 (b- l )8"(  

y3 ~ y ~  -I- 75 j (10.55) 
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By substituting (10.53) and (10.55) into (10.49), we finally get 

fl" ~" b "- 
~]4)(n, m )  <~ (n + 1 )b'- + 1 (m  + I )t, fl J(b2) J (b  - 1 ) 

x 2 b + , { ! b - ~ l )  3 b ( b - l ) 4 + b ( b - 1 )  6 (b-_l)8~ 
(10.56) 

The quantity o7(~3)(n, m) in (10.42) can be bounded in the same manner 
as ~4). The resulting bound is 

071131(n, m) ~< fl,, y,,, b 2 
(17-1-1) bz+t ( m +  1) b fl 

J(b2) J(b  - 1).2 b+' (1 4 ( b - 1  

(10.57) 

Finally, by recalling (10.36), we sum up the bounds (10.45), (10.48), 
(10.56), and (10.57) to bound 071(n, m) as 

~,(n, m) ~< 

<~ 

(17 "a t- l )  b2+l (m-k- 1) b 

X"~- b2 {2 K'+ 1 + 2b-'+b+2 [(b 2-- 

+ 2b+ lJ(b2) J(b-- I) 

1)3 (b- l )  (b-1)6] 
F y-~---- f 74 J 

1+(b-1): • q 
~' 7-'- Y ~ Y' JJ 

~$1 ym 
(11+ 1) b'-+] ( m +  1) b (10.58) 

where the final bound holds for sufficiently large fl and y. Note that how 
large these constants should be depends only on the band number b. Since 
the bound (10.58) has precisely the same form as the inductive assumption 
(10.44), we have proved that ~(n ' ,  m') satisfies the bound (10.44) for any 
n', m' >~ 0. 

10.6. Construction of the Vector v(~ 

We are now ready to construct the ground-state vector V~ which 
played an essential role in our construction in Sections 10.1 and 10.2. By 
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substituting the series (10.34) into (10.21), we get the following power 
series expression for to~ _ to~ v (k ) - (v , ,  (k)),,~o e 

p I! oG 

• E Z 
( s i .  t i )  e Jl/ x q /  Uj ~ all' 
with i = 1,..., n with j =  I , . . . ,  m 

S.t.(Si, t i )<~(S i+h t i+ l )  S,t. t t j ~ t j + l  

• Q,.,.,,(k) I-[ C,,j(k) 
i / \ j = l  

(10.59) 

{(s,. t,)}, {uj}) 

See the discussion following (10.34) for the range of the summations. To 
investigate the convergence of (10.59), we note that (4.12) and (3.9) imply 

[C,(k)l  <~ I~,1 =2"  (10.60) 

and 

IQs.,(k)l ~< 1 (10.61) 

By using the above two bounds, the definition (10.35) of ~(n ,  m), and the 
basic bound (10.44), and by noting that the numbers of possible combina- 
tions of {(si, t;)},=l ....... and {uj}j=~ ....... are bounded from above by b 2" 
and (b - 1 )% respectively, we find that the absolute value of the summand 
in (10.59) for each pair of n and m is bounded from above by 

( 1 1 +  1 )  b 2 + l  ( m +  1) b 

The quantity (10.62) is summable in i, and m provided that ([pl/22) b2fl < 1 
and 2 - ~ ( b - 1 ) y 2 " < l .  If this is the case, the infinite sum in (10.59) is 
absolutely convergent. This completes our construction of the ground-state 
vector v{~ 

Let us summarize the present result as the following lemma. 

Lemma 10.1. There exist positive constants fl and y which depend 
only on the band number b. When the parameters 2 and p satisfy 

Lpl 1 
< - -  (10.63) 

2 2 bEfl 
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and 

2 > 2 " ( b -  1)y (10.64) 

the ground-state vector vt~ [characterized by (10.3)] is expressed by 
the absolutely convergent sum (10.59). The coefficients cq(u, {s,, t,.}, {u j}) 
in (10.59) are independent of k, and satisfy the bound 

sup 
tt 

{ ( s l ,  t l ) } i=l , . . . , n  
{ ~q}j= L..., ,,, 

I~l(U; {(s~, t~)}, {uj})l 
Y' F' 

( n +  1) b-'+l ( m +  1) b 
(10.65) 

for any n, m. 

10.7. Dispersion Relation 

Let us investigate the dispersion relation et(k) for the lowest band, 
which appears, e.g., in (10.3). By substituting the expression (10.26) into 
the formal expansion (10.24) for el(k), we find 

,,,_,(k)) el(k) = t P" (w(k), O(k)" co) 
,,=l (w(k), w(k)) (10.66) 

Since to~ v,,_l(k) is expressed as the convergent expansion (10.34), it is 
apparent from (10.66) that there is a similar power series expansion for 
el(k). 

In fact, by substituting the expansion (10.34) into (10.66) and per- 
forming some estimates similar to those in Section 10.4, we get the expansion 

/ l = l  m ~ O  

• 2 2 {.j}/ 
(Si, ti) ~ ~ • ~t" u] ~ ~ ' 
w i t h  i = 1,,... n w i t h  j =  I , . . . ,  m 

s , t , (s i ,  l i ) ~ { S i + l , l i + l )  s.t. I / / ~  l / j +  I 

x Q,,. ,,(k) C,j(k) (10.67) 

where the coefficient e2({ (s,., t,)}, {u j}) is independent of k. The ranges of 
the sums over {si, t,.} and {uj} are the same as those in (10.34), (10.59). 
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For any n>~2 and m>~0, the coefficient a2({(s,-,t,)}, {uj}) in (10.67) 
satisfies the bound 

sup Ic%({(s,, t,)}, {u)})l 
{(Si. /i)}i= I ....... 

I ~ q l j =  1...., , ,  

<~b? Y ', ( b - 1 ) h ( b - 1 ) ' - P (  ~ ~,62~,+p . . . .  ~,)07~(n-l ,p) 
h,p>~O I t = 0 ,  1 

(10.68) 

with Go = 1, ~t = b -  1. Substituting the bound (10.44) for ~L into the right- 
hand side of (10.68) and performing estimates similar to those in Section 
10.5, we find for n >~ 1 and m >/0 that 4~ 

i,~nl ))hi 

sup I=,_({(s,, t,)}, {uj})l-< (n+ 1) ~ ( m +  1) b (10.69) 
{(Si. f i ) } i =  1 ....... 

{ Uj } j  = i . . . . . . .  

again for sufficiently large fl and 7. 
The bound (10.69), along with (10.60) and (10.61), proves the con- 

vergence of the sum (10.67) for 2 and p satisfying the conditions (10.63) 
and (10.64). 

10 .8 .  D u a l  V e c t o r s  

We shall develop power series expansions for the dual vectors V")(k) 
(with u~ql) defined in (10.6). By recalling the definition (10.4) of the 
vector v ')(k) with e ~ qi', we can express the components of the Gramm 
matrix G ( k ) i n  (10.5) as (G(k))o.o=lvt~ (G(k))o,,,=(G(k)),,.o=O, 
(G(k)),,.e,=v~)(k) (v(~~ *, and (G(k)L,~,  = [ v ot~ 2 + iv eto)(k)[,2 where 
e, e' s~ and e=~e'. Thus the b x b matrix G(k) can be compactly written 
in the form 

G(k) = 

Iv(~ 2 0 --. 0 \  

) 0 

�9 H(k) 
0 

(10.70) 

41 The  es t imate  for  n = 1 fol lows f rom explici t  ca lcu la t ion �9  

822/84/3-4-21 
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where the (b - 1 ) x (b - 1 ) matr ix  H(k) is given by 4~- 

H(k) = ]v~~ 2 I + g(k) | g(k)* ( 10.71 ) 

with the (b 1)-dimensional vectors  g(k) ~ol - =(v, ,  (k)), , ,~r and g ( k ) * =  
((v'~~ 

It is evident from (10.70) that  the inverse of  the G r a m m  matr ix  is 
writ ten as 

(vi H k 0) (10.72) 

As for the inverse of  H(k), we use the general formula  (10.19) to get 

1 ( i  1 |  (10.73) 
H(k) - I  iv~oO~(k)l 2 iv~O~k)12 g(k) 

By substi tut ing (10.72) and (10.73) in the definition (10.6) of  the dual 
vectors, we get 

1 
vl~ = ~~ v '~ (k )  (10.74) 

and 

1 (v~,2(k)) * 
~e~(k )=  ,vl"~(k) ~ v~,~ (10.75) 

Ivto ~ ( k ) l -  I r 1 7 6  -' ~,~, ,  

where e e~ We again denote  the componen t s  of  the dual vectors as 
- ,  ,, ~ j~,,,~,~:. By using (10.4), we obta in  f rom two equat ions the 

following expressions for the componen t s  of  the dual vectors in terms of  the 
componen t s  of  the ground-s ta te  vector  vt~ 

~Ol( k ) = ivlO~(k)1-2 .~O~: k ~ U u ~. I (10.76) 

for u E uT[, 

O~o,,l(k) = _ [vtO)(k)1-2 ( v~ ) ( k ) ) ,  (10.77) 

~l,,9(k) = - I r 1 7 6  (V<oO,(k)), (v~O~(k)), V~eO~(k) (10.78) 

42 H(k) and the identity matrix I in ( 10.71 ) and ( 10.73} are the only (b - l ) x (b - 1 ) matrices 
that appear in the present paper. Similarly g(k) is the only (b - l }-dimensional vector. 
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and 

~(.")(k) = 

where e, e' ~ ~/' and e :# e'. 

1 (vCo~ * I v ~ ) ( k ) l  "- 

vo(~ (k)  Iv l~  2 
(10.79) 

Recalling that each vcf)(k) admits the power series expansion (10.59), 
it is clear from the expressions (10.76)-(10.79) that there are similar expan- 
sions for the dual vectors. In order to control these expansions, we sub- 
stitute (10.59) into (10.76)-(10.79) and reorganize the resulting expressions 
into transparent series expansions. Then by using the bounds (10.65) for 
the coefficients in (10.59), we can control the coefficients of the new expan- 
sions for the dual vectors. Unfortunately this straightforward procedure 
turns out to be rather tedious to carry out in practice. We shall omit the 
details here since the required estimates are quite similar to those in 
Sections 10.4 and 10.5. 

The resulting series expansion for the dual vectors can be written as 

-,") ,'""k (p?'+'  (1y" 
~,,, (k)= ,,,,, ( )+ Z \ 7 /  Z ',,74 

g . l > ~ O  m > ~ O  
( g + / > ~ l )  

• Z 2 
( qh,  rh ) E all x Jig ( s i ,  t i)  E "?l • "~1 
w i t h  h = 1,..., g w i t h  i =  1...., / 

s.t.  (qh ,  rh) ~ (qh+ I- rh+l  ) s.t. ( s i ,  tt) ~ ( S i + l ,  t t + l )  

• ~3(... ' ;  {(q,,. r,,)}, {(s,, t,)}, {.j}) 

{,0 }{,0, iin ) x Qq,,. ,,,(k) (Q.,.,. ,,(k) 1" C,,j(k) 
I 1 . , ' k . j =  [ 

(10.80) 

2 
w i t h j  = 1,..., m 

s.t. uj <~ ztj + l 

We have introduced the dual vectors ~(")(k)= ()~,(,,)r with u e q / f o r  k t4' ~ ' ~ f I Z t ' E J ] /  

the model with p = 0  (i.e., the flat-band model). By using (10.76)-(10.79) 
with vC~ replaced by w(k) and the definition (10.14) of w(k), we find 

~ I 1  k if u = u ' = o  
,( )/2 if u = o ,  u'e~_T/' 

-,(',) = ~  - ) ,,( )/ if u6~ ', u'=o )~ ,, (k) (1 +A(k) /22) - ) •  

] ~.-C,,(k) C,,,(k)/22 if u,u 'eql ' ,  u r  

~1 - ( 1  +A(k)/2z) - '  (C,,(k))2/~ ~- if u=u'  eql'  
(10.81) 

where we have used (4.13). 
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The coefficients % in the expansion (10.80) can be shown to satisfy for 
each n/> I, m 1> 0 the bound 

sup sup I%(u, u'; { (qh, r,,)}, { ( s ,  t ,)},  {uj} )l <<. Cbfl"~"' 
g , / / > 0  u. u' 

( g + / = n )  {qh, r/,}h=l,....g 
{s~, lib= I..... t 
{ l l j } j =  I . . . . .  

(10.82) 

where 

]~ = 8b4fl, ~ - - 8 ( b -  1)), (10.83) 

and Cb is a constant which depends only on b. 
By using the bounds (10.82), (10.60), and (10.61), we can show that 

the power series (10.80) for the dual vectors converge provided that 

IPl< 0 
-.~ ro = b2]~ (10.84) 

and 

2V(b - 1) 
2>/20 0 (10.85) 

with a constant 0 < 0 < 1, which we shall now fix. Note that the conditions 
(10.63) and (10.64) [required for the convergence of the series for V~ 
and el(k)] are automatically satisfied if we assume (10.84) and (10.85). 
This completes our construction of the basis states. 

10.9. Summabi l i ty  of the Basis States 

It only remains to prove the summability of the basis states ~o t'), ~b t-'l 
and the effective hopping Ty.x stated in Lemmas 4.2, 4.4, and 4.3. It turns 
out that these bounds are natural consequences of the series expansions 
(10.59), (10.67), and (10.80). 

Let us look at the proofs of the bounds (4.25) and (4.26) in detail. We 
first recall that, for x E A o, the strictly localized basis states ~b ~'~ [defined by 
(4.23) and (4.24)] are written in terms of the w(k) of (10.14) as 

~k(~. '').. -- (270 - , / I  dk e -ik. (.,-- .,,)wt,( .,,l(k ) (10.86) 
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See Section 10.2 for the notations. Note that (10.86) is a special case of 
(10.9). From (10.9), (10.86), and the expansion (10.59), we find for xeAo 
that 

,x, ~b~-,=(2rO-a f dk e-ik(x-Y)(D{;)y)(k)--wlt{y)(k)) y - -  

(,/ - - f  ~- o~o z z 
n ~ 1 = ( s i ,  t i )  ~ q l  x ~ l  u j E  a#" 

wi th  i = 1,..., n w i th  j ~ 1,..., m 
s . t . ( $ i ,  tl) 6 ( s i + l , t i + l )  s.t. u / ~  tq+ I 

x0q(#(y); {(s,, t,)}, {uj}) / , .y({(s ,  t,)}, {/zj}) (10.87) 

with 

I~.y({(s,, t,)}, {uj}) 

) =(2g)-df  dke -ik'(x-y) Q~,,,,(k) C,,j(k) (10.88) 

Recalling the definitions (4.11) and (4.12), we find that 

E II., -, ~({(s,, t3}, {uj})l -< ~max X It" wl (2~) " ~ 2  "0' (10.89) 
y ~ A  " [ = E A  w ~ A  "" 

where we used (3.22) and Io~fl = 2L Similarly we have 

E 
y E A  

I x - y l  l IIx,>,({(sl, tD}, {uj})l 

)} ~<nlmax ~ It ' , . I  ~ m a x ( 1  Z Iw-zl.lt ' . , .I (2v) m 
L = e A  w ~ A  { ---~A \ t  u ' E A  

+ m  max ~ It'=.,.I (2v) " - '  Igl 
[ = E A  w ~ A  g 

~< (n + m) R2 v"' (10.90) 

where we used (3.23) and noted that [g[ = x,/-v/2 for g s ~ .  In the final step, 
we used the assumption x/Cv/2 ~< R introduced right after (3.23). 
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We substitute the bound (10.89) for Ix.y and the bound (10.65) for ~l 
to (10.87) to get 

E Ix) Ix) Iq, y - ~,y I 
yEA 

(Iplh" (!h"' P" y" <-2 2 b'"Ib-1)" 
,,=l .... o ( n +  1) b-'+l (m+ I) '5 

f ~ ( ~  / " t f ~  (~ )"'} 
Z b-'/~ Z 2~(b - 1) ), 

k n ~  1 / J k m = 0  

_ _  2 . , , ,  

~< Bt I;4 (10.91) 

for p and 2 satisfying (10.84) and (10.85) [or (10.63) and (10.64)]. The 
constant B, will be fixed later. 

Similarly we use (10.90) to get 

~. I x - y l  Iq):-r -,/g")l ~< ~ [ b 2 " ( b - 1 )  "' ._., ~ y , 

yEA n = l  m = 0  

X(n+ 1) ~ (m+ 1) b (n +m)  R.2 .... 

<<.B~R ~2 (10.92) 

which is the desired bound (4.26). The bounds (4.25), (4.26) for x e A '  as 
well as the remaining bounds (4.27), (4.28) follow in the same manner. 

The bounds (4.32) and (4.33) for the effective hopping r.,..y stated in 
Lemma 4.3 are proved in exactly the same manner by using the definition 
(4.31), the expansion (10.67) for e,(k),  and the bounds (10.69) for the 
coefficients. 

The bounds (4.36)-(4.39) for the dual basis states can also be shown 
in the same spirit. A major difference is that c~ I'-) does not coincide with the 
strictly localized state ~") when p = 0. To control this situation, we note 

I~")-,/g">l -(") ~b<~)l ~7/i.,-~ ~/gx)[ (10.93) T~, ,~<1% -T.,, ,+,T, ,  - ~ : ,  

where ~c,-~ (which is the dual basis states for p = 0) is defined as " r y  

f o --ik. (x -- 3,).t~ { I t (x)){ / , , . '~  ~y~/Ix~=(2g)-a dk . . . .  ~,o') "~' (10.94) 
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with ~{"l(k) defined in (10.81). By using the series expansion (10.80), we 
can control the term I~!,: "~- ~;") I in exactly the same way as we controlled 
Iq~!f I -  ~k{~,~l[ in the above. Consequently, we get 

~2 I~; ") ~")1 ~<B, IPl - I~oy - i ~ y  I~/Jl"~-_ (10.95) 
x ~ A  ),~sA 

and 

Ix-yl �9 I{e:,"- {"} - ~yl0 {"} I, <<.B1R!-~, 
x f f A  

E Ix-yl �9 ~y--{x}- ~P!;"} I <~B,R .v~ A 

(10.96) 

At this stage, we fix the constant Bt so that the bounds (4.25)-(4.28), 
{10.95), and (10.96) are simultaneously satisfied. 43 Note that B I depends 
only on the band number b. 

To control the second term in (10.93), we first note 

?p{x}_ ~ ~,-} = (2~ ) -~  I dk ~-'*'{~-  ~}r{,,{-,}} y . ~ b/l{),} (10.97) 

with 

if (tO __ f ~ u' -- I 
1 if u = u ' = o  

( A ( k ) / 2 2 ) ( l + A ( k ) / 2 2 ) - t •  - C , , , ( k ) / 2  if u = o ,  u'~~ ' 

I C, (k) /2  if u~ql ' ,  u ' = o  

(C,,(k) C,,,(k)/2z)(1 + A(k)/22) -1 if u, u' t~  ' 

(10.98) 

The expressions (10.97), (10.98) are straightforward consequences of 
(10.94), (10.8f), (10.14), and (10.4). By expanding { l + ( A ( k ) / 2 2 ) }  -~ in 
(10.98), we can express b{x)-dl(x) as a power series of 2 -2. By analyzing " r y  " r  V 

the series, it is easily shown thai, for 2 1> 20, the summations 

43 Of course it is possible to state the bounds  (4.25)-(4.28) with smaller B1 than in (10.95) or 
(10.96). We have unified the coefficients as much  as possible to make the formulas less 
complicated. 
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,/,(x) i ~ (.,-) ~b(x)l Z ,, 2 f x - y t  T. - T , , ,  
y ~ A  y ~ d  

__ d / x )  ~ l (x)  ilt(x) E 17k'(' ~.,, ,, E I x - y l .  I . . r 3 - -  r y  

N~A ,x'~A 

are all bounded from above by B2/2  2, where B 2 is a constant which 
depends only on the band number b. By combining these bounds with 
(10.93), (10.95), and (10.96), we get the desired bounds (4.36)-(4.39). 
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